Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Schindler, Christina

  • Google
  • 2
  • 10
  • 17

Hochschule München University of Applied Sciences

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (2/2 displayed)

  • 2022CuxS thin films for printed memory cells and temperature sensors1citations
  • 2021Fiber‐Optic Photoacoustic Generator Realized by Inkjet‐Printing of CNT‐PDMS Composites on Fiber End Faces16citations

Places of action

Chart of shared publication
Eulenkamp, Constanze
1 / 4 shared
Oser, Patrick
1 / 2 shared
Schultespechtel, Levin
1 / 1 shared
Grosse, Christian U.
1 / 2 shared
Rivas, Sergio Sánchez
1 / 2 shared
Düttmann, Oliver
1 / 1 shared
Wu, Datong
1 / 1 shared
Schmid, Fabian
1 / 1 shared
Jehn, Johannes
1 / 1 shared
Kaiser, Michael
1 / 1 shared
Chart of publication period
2022
2021

Co-Authors (by relevance)

  • Eulenkamp, Constanze
  • Oser, Patrick
  • Schultespechtel, Levin
  • Grosse, Christian U.
  • Rivas, Sergio Sánchez
  • Düttmann, Oliver
  • Wu, Datong
  • Schmid, Fabian
  • Jehn, Johannes
  • Kaiser, Michael
OrganizationsLocationPeople

article

CuxS thin films for printed memory cells and temperature sensors

  • Schindler, Christina
Abstract

<jats:title>Abstract</jats:title><jats:p>Printed electronics require a multitude of various inks for different applications which leads to compatibility issues for their integration. We present a procedure to deposit a thin layer of Cu<jats:sub><jats:italic>x</jats:italic></jats:sub>S via inkjet printing of Na<jats:sub>2</jats:sub>S<jats:inline-formula><jats:tex-math><?CDATA $_{aq}$?></jats:tex-math><mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" overflow="scroll"><mml:msub><mml:mi /><mml:mrow><mml:mi mathvariant="normal">a</mml:mi><mml:mi mathvariant="normal">q</mml:mi></mml:mrow></mml:msub></mml:math><jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="fpeac6783ieqn1.gif" xlink:type="simple" /></jats:inline-formula> on a thermally grown or inkjet-printed Cu surface that provides applications in electrochemical metallization memory cells (ECMs) or temperature sensors. The nanosized transformation from Cu to Cu<jats:sub><jats:italic>x</jats:italic></jats:sub>S is investigated via confocal microscopy, scanning electron microscopy (SEM), as well as energy-dispersive x-ray spectroscopy (EDX). We analyze individual responses from the sensor and memory and evaluate their respective potential in printed electronics. The negative temperature coefficient of the semiconducting Cu<jats:sub><jats:italic>x</jats:italic></jats:sub>S is determined to be <jats:inline-formula><jats:tex-math><?CDATA ${25,80} = (656)$?></jats:tex-math><mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" overflow="scroll"><mml:msub><mml:mi>β</mml:mi><mml:mrow><mml:mn>25</mml:mn><mml:mo>,</mml:mo><mml:mn>80</mml:mn></mml:mrow></mml:msub><mml:mo>=</mml:mo><mml:mo stretchy="false">(</mml:mo><mml:mn>656</mml:mn><mml:mo>±</mml:mo><mml:mn>5</mml:mn><mml:mo stretchy="false">)</mml:mo></mml:math><jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="fpeac6783ieqn2.gif" xlink:type="simple" /></jats:inline-formula> K. Resistive switching is observed for a current compliance between 0.1 and 1000 <jats:italic>µ</jats:italic>A, with a resistance ratio R<jats:inline-formula><jats:tex-math><?CDATA $_{OFF}$?></jats:tex-math><mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" overflow="scroll"><mml:msub><mml:mi> </mml:mi><mml:mrow><mml:mi mathvariant="normal">O</mml:mi><mml:mi mathvariant="normal">F</mml:mi><mml:mi mathvariant="normal">F</mml:mi></mml:mrow></mml:msub></mml:math><jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="fpeac6783ieqn3.gif" xlink:type="simple" /></jats:inline-formula>/R<jats:inline-formula><jats:tex-math><?CDATA $_{ON}$?></jats:tex-math><mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" overflow="scroll"><mml:msub><mml:mi /><mml:mrow><mml:mi mathvariant="normal">O</mml:mi><mml:mi mathvariant="normal">N</mml:mi></mml:mrow></mml:msub></mml:math><jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="fpeac6783ieqn4.gif" xlink:type="simple" /></jats:inline-formula> up to 10<jats:sup>5</jats:sup>. The use of the same inks and processes for the memory and sensor components paves the way for new and customized designs for smart logistics applications where temperature monitoring is required.</jats:p>

Topics
  • impedance spectroscopy
  • surface
  • scanning electron microscopy
  • thin film
  • Energy-dispersive X-ray spectroscopy
  • confocal microscopy