Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Nypelö, Tiina

  • Google
  • 15
  • 59
  • 950

Chalmers University of Technology

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (15/15 displayed)

  • 2023Visualizing cellulose chains with cryo scanning transmission electron microscopycitations
  • 2023Carboxylation of sulfated cellulose nanocrystals by family AA9 lytic polysaccharide monooxygenases5citations
  • 2022Xylan-cellulose thin film platform for assessing xylanase activity14citations
  • 2021How cellulose nanofibrils and cellulose microparticles impact paper strength—A visualization approach20citations
  • 2021Fat tissue equivalent phantoms for microwave applications by reinforcing gelatin with nanocellulose5citations
  • 2020Lignocellulosicscitations
  • 2019Design of Friction, Morphology, Wetting, and Protein Affinity by Cellulose Blend Thin Film Composition9citations
  • 2018Adhesion properties of regenerated lignocellulosic fibres towards poly(lactic acid) microspheres assessed by colloidal probe technique11citations
  • 2018Self-Standing Nanocellulose Janus-Type Films with Aldehyde and Carboxyl Functionalities36citations
  • 2017Space-resolved thermal properties of thermoplastics reinforced with carbon nanotubes6citations
  • 2017Unmodified multi-wall carbon nanotubes in polylactic acid for electrically conductive injection-moulded composites12citations
  • 2014Nanocellulose properties and applications in colloids and interfaces562citations
  • 2014Magneto-responsive hybrid materials based on cellulose nanocrystals63citations
  • 2013Cellulose Nanofibrils: From Strong Materials to Bioactive Surfaces171citations
  • 2012Interactions between inorganic nanoparticles and cellulose nanofibrils36citations

Places of action

Chart of shared publication
Petschacher, Patrick
1 / 1 shared
Spirk, Stefan
4 / 21 shared
Kothleitner, Gerald
1 / 35 shared
Wiltsche, Helmar
1 / 3 shared
Knez, Daniel
1 / 48 shared
Navarro, Saül Llàcer
1 / 1 shared
Olsson, Lisbeth
1 / 2 shared
Tõlgo, Monika
1 / 1 shared
Geijer, Cecilia
1 / 1 shared
Ravn, Jonas L.
1 / 1 shared
Schaubeder, Jana B.
1 / 1 shared
Manfrao-Netto, Joao H. C.
1 / 1 shared
Orzan, Eliott J. Q.
1 / 1 shared
Eckhart, Rene
1 / 4 shared
Zabler, Simon
1 / 6 shared
Bauer, Wolfgang
1 / 8 shared
Zankel, Armin
1 / 4 shared
Bardet, Sylvia M.
1 / 1 shared
Hobisch, Mathias A.
1 / 1 shared
Ström, Anna
1 / 3 shared
Trefná, Hana Dobšíček
1 / 1 shared
Navarro, Saul Llacer
1 / 1 shared
Lorentzon, Fredrik
1 / 1 shared
Biesalski, Markus
1 / 2 shared
Nau, Maximilian
1 / 1 shared
Teichert, Gundula Marie
1 / 1 shared
Palasingh, Chonnipa
1 / 1 shared
Teichert, Christian
1 / 15 shared
Czibula, Caterina
1 / 9 shared
Hobisch, Mathias
1 / 3 shared
Colson, Jérôme
1 / 1 shared
Mautner, Andreas
1 / 26 shared
Konnerth, Johannes
2 / 12 shared
Sixta, Herbert
1 / 22 shared
Asaadi, Shirin
1 / 9 shared
Pettersson, Torbjörn
1 / 6 shared
Amer, Hassan
1 / 1 shared
Rosenau, Thomas
1 / 13 shared
Potthast, Antje
1 / 16 shared
Klug, Andreas
1 / 3 shared
Rivière, Pauline
1 / 1 shared
Mundigler, Norbert
2 / 2 shared
Wimmer, Rupert
2 / 5 shared
Obersriebnig, Michael
1 / 2 shared
Riviere, Pauline
1 / 1 shared
Bock, Henry
1 / 1 shared
Mueller, Marcus
1 / 1 shared
Salas, Carlos
2 / 2 shared
Rodriguez-Abreu, Carlos
2 / 2 shared
Carrillo, Carlos
1 / 1 shared
Rivas, Jose
1 / 2 shared
Dickey, Michael D.
1 / 12 shared
Arboleda, Julio
1 / 1 shared
Hoeger, Ingrid C.
1 / 1 shared
Zhang, Yanxia
1 / 1 shared
Laine, Janne
1 / 11 shared
Österberg, Monika
1 / 26 shared
Paltakari, Jouni
1 / 10 shared
Pynnönen, Hanna
1 / 1 shared
Chart of publication period
2023
2022
2021
2020
2019
2018
2017
2014
2013
2012

Co-Authors (by relevance)

  • Petschacher, Patrick
  • Spirk, Stefan
  • Kothleitner, Gerald
  • Wiltsche, Helmar
  • Knez, Daniel
  • Navarro, Saül Llàcer
  • Olsson, Lisbeth
  • Tõlgo, Monika
  • Geijer, Cecilia
  • Ravn, Jonas L.
  • Schaubeder, Jana B.
  • Manfrao-Netto, Joao H. C.
  • Orzan, Eliott J. Q.
  • Eckhart, Rene
  • Zabler, Simon
  • Bauer, Wolfgang
  • Zankel, Armin
  • Bardet, Sylvia M.
  • Hobisch, Mathias A.
  • Ström, Anna
  • Trefná, Hana Dobšíček
  • Navarro, Saul Llacer
  • Lorentzon, Fredrik
  • Biesalski, Markus
  • Nau, Maximilian
  • Teichert, Gundula Marie
  • Palasingh, Chonnipa
  • Teichert, Christian
  • Czibula, Caterina
  • Hobisch, Mathias
  • Colson, Jérôme
  • Mautner, Andreas
  • Konnerth, Johannes
  • Sixta, Herbert
  • Asaadi, Shirin
  • Pettersson, Torbjörn
  • Amer, Hassan
  • Rosenau, Thomas
  • Potthast, Antje
  • Klug, Andreas
  • Rivière, Pauline
  • Mundigler, Norbert
  • Wimmer, Rupert
  • Obersriebnig, Michael
  • Riviere, Pauline
  • Bock, Henry
  • Mueller, Marcus
  • Salas, Carlos
  • Rodriguez-Abreu, Carlos
  • Carrillo, Carlos
  • Rivas, Jose
  • Dickey, Michael D.
  • Arboleda, Julio
  • Hoeger, Ingrid C.
  • Zhang, Yanxia
  • Laine, Janne
  • Österberg, Monika
  • Paltakari, Jouni
  • Pynnönen, Hanna
OrganizationsLocationPeople

article

Fat tissue equivalent phantoms for microwave applications by reinforcing gelatin with nanocellulose

  • Ström, Anna
  • Nypelö, Tiina
  • Trefná, Hana Dobšíček
  • Navarro, Saul Llacer
  • Lorentzon, Fredrik
Abstract

<p>Tissue mimicking phantom materials with thermal and dielectric equivalence are vital for the development of microwave diagnostics and treatment. The current phantoms representing fat tissue are challenged by mechanical integrity at relevant temperatures coupled with complex production protocols. We have employed two types of nanocellulose (cellulose nanocrystals and oxidized cellulose nanocrystals) as reinforcement in gelatin stabilized emulsions for mimicking fat tissue. The nanocellulose-gelatin stabilized emulsions were evaluated for their dielectric properties, the moduli-temperature dependence using small deformation rheology, stress-strain behavior using large deformation, and their compliance to quality assurance guidelines for superficial hyperthermia. All emulsions had low permittivity and conductivity within the lower microwave frequency band, accompanied by fat equivalent thermal properties. Small deformation rheology showed reduced temperature dependence of the moduli upon addition of nanocellulose, independent of type. The cellulose nanocrystals gelatin reinforced emulsion complied with the quality assurance guidelines. Hence, we demonstrate that the addition of cellulose nanocrystals to gelatin stabilized emulsions has the potential to be used as fat phantoms for the development of microwave diagnostics and treatment.</p>

Topics
  • stress-strain behavior
  • cellulose