People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Dr Durga, Prasad C.
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (5/5 displayed)
- 2024An experimental study on material removal rate and surface roughness of Cu-Al-Mn ternary shape memory alloys using CNC end millingcitations
- 2024Study on tool wears in turning Al2219, unhybrid and hybrid metal matrix nano composites by CCD design of experimentcitations
- 2022Elevated temperature erosion performance of plasma sprayed NiCrAlY/TiO<sub>2</sub> coating on MDN 420 steel substratecitations
- 2015Dry Sliding Wear Behaviour of Al<sub>2</sub>O<sub>3</sub> Coatings for AISI 410 Grade Stainless Steelcitations
- 2015Development of Corrosion Resistance Coating for AISI 410 Grade Steelcitations
Places of action
Organizations | Location | People |
---|
article
An experimental study on material removal rate and surface roughness of Cu-Al-Mn ternary shape memory alloys using CNC end milling
Abstract
<jats:title>Abstract</jats:title><jats:p>This study investigates the impact of Computer Numerical Control (CNC) milling parameters on Cu-Al-Mn SMAs (Shape memory alloys) to evaluate the effects on Surface Roughness (SR) and Material Removal Rate (MRR). The primary variables examined comprise of cutting speed, feed rate, and depth of cut. Results indicate that the Shape Memory Effect (SME) is higher in Copper Aluminium Manganese (CAM 3) compared to CAM 1 and CAM 2, with SME improving from 3.5% to 5.5% as Manganese (Mn) content increases, reflecting an increase in dislocations within the metal’s crystal structure. Surface roughness increases with higher feed rates and depths of cut but decreases with increased cutting speed. MRR shows a positive correlation with feed rate, depth of cut, and cutting speed, though it decreases with higher Mn content. Notably, CAM 3 exhibits lower MRR compared to CAM 1 and CAM 2. Scanning Electron Microscopy (SEM) reveals that at lower feed rates (0.10 mm rev<jats:sup>−1</jats:sup>), the surface is smooth and free of ridges or feed marks, while at higher feed rates (0.18 mm rev<jats:sup>−1</jats:sup>), noticeable surface imperfections and plastic deformation occur. The addition of Mn improves surface smoothness and machinability, it also affects MRR. Further suggesting that Mn content and milling parameters significantly influence both the mechanical properties and machinability of Cu-Al-Mn SMAs respectively.</jats:p>