Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Selami, Salim

  • Google
  • 1
  • 8
  • 7

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (1/1 displayed)

  • 2024Effect of carburizing time treatment on microstructure and mechanical properties of low alloy gear steels7citations

Places of action

Chart of shared publication
Debbah, Younes
1 / 1 shared
Fernandes, Filipe
1 / 26 shared
Touati, Sofiane
1 / 1 shared
Chitour, Mourad
1 / 1 shared
Kahaleras, Mohamed Said
1 / 1 shared
Khelifa, Mansouri
1 / 1 shared
Zemmouri, Amina
1 / 1 shared
Boumediri, Khaled
1 / 1 shared
Chart of publication period
2024

Co-Authors (by relevance)

  • Debbah, Younes
  • Fernandes, Filipe
  • Touati, Sofiane
  • Chitour, Mourad
  • Kahaleras, Mohamed Said
  • Khelifa, Mansouri
  • Zemmouri, Amina
  • Boumediri, Khaled
OrganizationsLocationPeople

article

Effect of carburizing time treatment on microstructure and mechanical properties of low alloy gear steels

  • Debbah, Younes
  • Fernandes, Filipe
  • Touati, Sofiane
  • Chitour, Mourad
  • Selami, Salim
  • Kahaleras, Mohamed Said
  • Khelifa, Mansouri
  • Zemmouri, Amina
  • Boumediri, Khaled
Abstract

<jats:title>Abstract</jats:title><jats:p>Gas carburizing significantly enhances the surface properties of low-alloy gear steels, resulting in superior micro-hardness, layer thickness, carbon content, and overall mechanical properties. Unlike other thermochemical processes such as nitriding and carbonitriding, which have limitations in core properties and hardening depth, gas carburizing offers unmatched surface hardness, wear resistance, and mechanical strength. This makes it ideal for demanding applications in the automotive, aerospace, and manufacturing industries. In this research, samples were gas-carburized for 4, 6, or 8 h. The results showed significant improvements: micro-hardness increased from approximately 140 HV to over 819 HV, and the surface layer thickness grew by more than 41%, from 1166 <jats:italic>μ</jats:italic>m to 1576 <jats:italic>μ</jats:italic>m. Additionally, the carbon content in the surface layer increased by over 450%, reaching up to 0.94 wt%. Clear correlations were observed between the duration of heating and the mechanical properties. Longer heating times, particularly after 8 h, raised ultimate tensile strength from 427.29 MPa to 778.33 MPa, while simultaneously decreasing elongation from 26.07% to 2.88% and resilience from 180 J cm<jats:sup>−2</jats:sup> to 6.66 J cm<jats:sup>−2</jats:sup>. This optimization not only enhances surface hardness and durability but also improves key mechanical properties such as tensile strength, stiffness, resilience, and overall mechanical performance.</jats:p>

Topics
  • microstructure
  • surface
  • Carbon
  • wear resistance
  • strength
  • steel
  • hardness
  • tensile strength
  • carbon content