People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Nasr, Emad Abouel
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (10/10 displayed)
- 2024Electrodeposition of Zn/TiO2 Coatings on Ti6Al4V Produced by Selective Laser Melting, the Characterization and Corrosion Resistance
- 2024Electrical conductivity analysis of extrusion-based 3D-printed graphenecitations
- 2024Tribological analysis of titanium alloy (Ti-6Al-4V) hybrid metal matrix composite through the use of Taguchi’s method and machine learning classifiers
- 2024Tribological investigations of hemp reinforced NAO brake friction polymer composites with varying percentage of resin loadingcitations
- 2024Experimental investigation of tungsten–nickel–iron alloy, W95Ni3.5Fe1.5, compared to copper monolithic bulletscitations
- 2023Optimization of Wire EDM Process Parameters for Machining Hybrid Composites Using Grey Relational Analysiscitations
- 2023Mechanical Characterization and Microstructural Analysis of Stir-Cast Aluminum Matrix Composites (LM5/ZrO2)citations
- 2023Analysis of Wear Using the Taguchi Method in TiSiNOS-Coated and Uncoated H13 Tool Steelcitations
- 2022Development of conductive polymeric nanofiber patches for cardiac tissue engineering applicationcitations
- 2018Another Approach to Characterize Particle Distribution during Surface Composite Fabrication Using Friction Stir Processingcitations
Places of action
Organizations | Location | People |
---|
article
Electrodeposition of Zn/TiO2 Coatings on Ti6Al4V Produced by Selective Laser Melting, the Characterization and Corrosion Resistance
Abstract
<jats:title>Abstract</jats:title><jats:p>Recently, additive manufacturing techniques have begun to be implemented extensively in the production of implants. Selective laser melting (SLM), one of the layered manufacturing methods, is a method that is fre-quently used in implant production. Ti6Al4V alloy is a material of choice for implants due to its low density and high biocompatibility. Recent research, however, has demonstrated that Ti6Al4V alloy emits long-term ions (such as Al and V) that are hazardous to health. Surface modifications, including coating, are therefore required for implants. Selective laser melting (SLM), one of the layered manufacturing methods, is a method that is frequently used in implant production.&#xD;In this study, zinc-supported TiO2 was deposited on a part produced by SLM using the electrodeposition method, which has not been applied before. Thus, Al and V ions that would be released from the Ti6Al4V alloy were prevented. The effects of processing time, amount of TiO2 addition, microstructure of anode materials, and resistance to wear and corrosion were investigated. The coating hardness and thickness increased with increasing processing time and TiO2 concentration. It has been observed that the addition of TiO2 to zinc anode coatings results in an increase in wear and a decrease in corrosion rate. It was noted that the specimens exhibiting the most significant wear also possessed the highest hardness value. The specimens were gene-rated utilizing a graphite anode, underwent a 30-minute processing time, and comprised 10 g/l of TiO2.Keywords: electrodeposition coating; additive manufacturing; Ti6Al4V Grade 5 ELI; TiO2 ceramic; corrosion&#xD;</jats:p>