People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Yasir, Muhammad
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (18/18 displayed)
- 2024In situ polyaniline polymerization on electrospun cellulose acetate nanofibers derived from recycled waste filter butts of cigarettes for the enhanced removal of methyl orange and rhodaminecitations
- 2024Impact of cyclic thermal shocks on the electrochemical and tribological properties of Fe-based amorphous coatingcitations
- 2024Study of Graphene Oxide and Silver Nanowires Interactions and Its Association with Electromagnetic Shielding Effectivenesscitations
- 2024Shifting from sustained to delayed drug delivery systems: Encapsulated mesoporous silica-chitosan grafted polylactic acid-based composite approachcitations
- 2023Enhancement of antibacterial properties, surface morphology and In vitro bioactivity of hydroxyapatite-zinc oxide nanocomposite coating by electrophoretic deposition techniquecitations
- 2023Enhancement of Antibacterial Properties, Surface Morphology and In Vitro Bioactivity of Hydroxyapatite-Zinc Oxide Nanocomposite Coating by Electrophoretic Deposition Techniquecitations
- 2023Boosting photocatalytic degradation of estrone hormone by silica-supported g-C3N4/WO3 using response surface methodology coupled with Box-Behnken design
- 2023Photocatalytic degradation of atrazine and abamectin using <i>Chenopodium album</i> leaves extract mediated copper oxide nanoparticlescitations
- 2022Development and Characterization of Zein/Ag-Sr Doped Mesoporous Bioactive Glass Nanoparticles Coatings for Biomedical Applicationscitations
- 2022Melimine-modified 3D-printed polycaprolactone scaffolds for the prevention of biofilm-related biomaterial infectionscitations
- 2020Enhanced Tribological Properties of LA43M Magnesium Alloy by Ni60 Coating via Ultra-High-Speed Laser Claddingcitations
- 2020Mechanism of Action of Surface Immobilized Antimicrobial Peptides Against Pseudomonas aeruginosacitations
- 2019Quantifying the effects of basalt fibers on thermal degradation and fire performance of epoxy-based intumescent coating for fire protection of steel substratecitations
- 2019High-Performance Anticorrosive Polyester Coatings on Mild Steel in Mixed Acid Mixtures Environmentscitations
- 2017THE EFFECT OF CARBON NANOTUBES CONCENTRATION ON COMPLEX PERMITTIVITY OF NANOCOMPOSITEScitations
- 2015Oxidation of the GaAs semiconductor at the Al2O3/GaAs junctioncitations
- 2015Oxidation of the GaAs semiconductor at the Al2O3/GaAs junctioncitations
- 2014Wide band characterization of MWCNTs composites based on epoxy resincitations
Places of action
Organizations | Location | People |
---|
article
Impact of cyclic thermal shocks on the electrochemical and tribological properties of Fe-based amorphous coating
Abstract
<jats:title>Abstract</jats:title><jats:p>Fe-based amorphous coatings hold immense potential for marine industries due to their remarkable properties, including high hardness, exceptional corrosion resistance, and outstanding wear resistance. However, their performance under thermal shock conditions, particularly in high-temperature applications, remains a topic requiring further investigation. In this work, a Fe-based amorphous coating with a composition of Fe<jats:sub>48</jats:sub>Mo<jats:sub>14</jats:sub>Cr<jats:sub>15</jats:sub>Y<jats:sub>2</jats:sub>C<jats:sub>15</jats:sub>B<jats:sub>6</jats:sub> was successfully developed using High-velocity oxygen fuel thermal spraying. To assess the thermal shock resistance of the amorphous coating, we subjected them to thermal cycles at 300 °C for 150 times, followed by cooling in two different mediums: saltwater quenching and air cooling. The results revealed that the coating maintained excellent contact with the substrate and preserved mainly amorphous structure both in the as-sprayed condition and after thermal shocks. Interestingly, the differential scanning calorimetry (DSC) results indicated that the air-cooled samples exhibited greater structural relaxation and crystallization compared to the brine-quenched samples. This microstructure changes in the air-cooled samples resulted in inferior mechanical properties, such as wear resistance and hardness, compared to the brine-quenched and as-sprayed samples.</jats:p>