Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Gouda, Shivakumar

  • Google
  • 2
  • 9
  • 23

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (2/2 displayed)

  • 2024Impact of ply stacking sequence on the mechanical response of hybrid Jute-Banana fiber phenoplast composites10citations
  • 2023Realization of mechanical and tribological properties of hybrid banana, sisal, and pineapple fiber epoxy composites using naturally available fillers13citations

Places of action

Chart of shared publication
Sharma, Priyaranjan
1 / 6 shared
Math, Mahantesh
1 / 1 shared
Jagadeesh, C.
1 / 1 shared
Maruthi, Prashanth B. H.
2 / 3 shared
Ramesh, S.
1 / 12 shared
Naik, Gajanan
1 / 1 shared
Shivayogi, B. H.
1 / 1 shared
Manjunatha, T. S.
1 / 1 shared
Badyankal, Pramod V.
1 / 1 shared
Chart of publication period
2024
2023

Co-Authors (by relevance)

  • Sharma, Priyaranjan
  • Math, Mahantesh
  • Jagadeesh, C.
  • Maruthi, Prashanth B. H.
  • Ramesh, S.
  • Naik, Gajanan
  • Shivayogi, B. H.
  • Manjunatha, T. S.
  • Badyankal, Pramod V.
OrganizationsLocationPeople

article

Impact of ply stacking sequence on the mechanical response of hybrid Jute-Banana fiber phenoplast composites

  • Sharma, Priyaranjan
  • Math, Mahantesh
  • Jagadeesh, C.
  • Maruthi, Prashanth B. H.
  • Gouda, Shivakumar
  • Ramesh, S.
  • Naik, Gajanan
Abstract

<jats:title>Abstract</jats:title><jats:p>Natural fiber composites are increasingly gaining popularity as a cost-effective and environmentally friendly alternative to synthetic fibers. Incorporating a variety of fibers enhances mechanical properties. The arrangement of fibers plays a crucial role in determining the mechanical characteristics of laminate composites. Therefore, the primary objective of this study is to investigate how the stacking order of jute (J) and banana (B) fibers affects the mechanical behaviour of composites made from phenolic resins. Four different fiber mat stacking sequences (J/B/B/J, B/J/J/B, J/B/J/B, and J/J/B/B) were used for developing the eco-fiber composites using the heat-press technique. Several mechanical parameters were assessed, including tensile strength, flexural strength, impact strength, and inter-laminar shear strength (ILSS). The experimental results indicated that the JBBJ composite exhibits superior tensile strength (46.65 MPa) and modulus (993 MPa) compared to the other composites due to the presence of high-strength jute fibers on the surface. Additionally, the flexural strength of the JBBJ composite (87.24 MPa) was found to be noteworthy. It was observed that the impact strength of jute fibers surpasses that of banana fibers. Consequently, the JBBJ composite demonstrates higher values for energy absorption (0.482 J) and impact strength (120 J m<jats:sup>−1</jats:sup>) compared to the other composites tested. Moreover, the JBBJ composite displays higher inter-laminar shear strength and hardness values compared to BJJB, JBJB, and JJBB by 30%, 35%, and 43%, respectively. Scanning electron microscope microphotographs reveal strong correlational fracture failure mechanisms, indicative of improved mechanical properties in the JBBJ composite. Based on the experimental results, it is evident that the JBBJ composite can be utilized in lightweight applications.</jats:p>

Topics
  • impedance spectroscopy
  • surface
  • strength
  • composite
  • flexural strength
  • hardness
  • tensile strength
  • resin