Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Ismail, Sameh H.

  • Google
  • 2
  • 10
  • 16

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (2/2 displayed)

  • 2024Development of poly(safranine-co-phenosafranine)/GNPs/MWCNTs nanocomposites for quartz crystal microbalance sensor detection of arsenic (III) ions3citations
  • 2023ZnO, TiO2 and Fe3O4/Carbopol hybrid nanogels for the cleaner process of paper manuscripts from dust stains and soil remains13citations

Places of action

Chart of shared publication
Alamry, Khalid A.
1 / 2 shared
Asiri, Abdullah M.
1 / 13 shared
Hassan, Rushdya Rabee Ali
1 / 1 shared
Mohamed, Yassmine A.
1 / 1 shared
Hassan, Haidi M.
1 / 1 shared
Farid, Yara
1 / 1 shared
Ismail, Mai E. M.
1 / 1 shared
Mohamed, Hager
1 / 1 shared
Abdel-Hamied, Mostafa
1 / 1 shared
Salem, Mohamed Z. M.
1 / 1 shared
Chart of publication period
2024
2023

Co-Authors (by relevance)

  • Alamry, Khalid A.
  • Asiri, Abdullah M.
  • Hassan, Rushdya Rabee Ali
  • Mohamed, Yassmine A.
  • Hassan, Haidi M.
  • Farid, Yara
  • Ismail, Mai E. M.
  • Mohamed, Hager
  • Abdel-Hamied, Mostafa
  • Salem, Mohamed Z. M.
OrganizationsLocationPeople

article

Development of poly(safranine-co-phenosafranine)/GNPs/MWCNTs nanocomposites for quartz crystal microbalance sensor detection of arsenic (III) ions

  • Alamry, Khalid A.
  • Ismail, Sameh H.
  • Asiri, Abdullah M.
Abstract

<jats:title>Abstract</jats:title><jats:p>Contamination of drinking water by heavy metals is extremely dangerous to human health. The formation of a quartz crystal microbalance (QCM) sensor for the rapid and portable detection of harmful heavy metals such as arsenic (As) ions in water samples is detailed in this work. Equimolar ratios of safranine (SF) and phenosafranine (Ph) copolymers (PSF-Ph) were synthesized via a chemical oxidative polymerization approach. The copolymer was modified with multi-wall carbon nanotubes (MWCNTs) and graphene nanoplatelets (GNPs) at different percentages (1, 3, 5, and 10%) to form nanocomposites of PSF-Ph/MWCNTs/GNPs. Thermal analysis of the nanocomposites revealed that the final polymer decomposition temperature (PDT<jats:sub>final</jats:sub>) values fell between 619 and 630 °C, and the nanocomposite with 10% loading exhibited the highest decomposition temperatures for T<jats:sub>10</jats:sub>, T<jats:sub>30</jats:sub>, and T<jats:sub>50</jats:sub>. The nanohybrid QCM sensor detected As(III) down to parts-per-billion levels based on the change in the oscillation frequency. The sensor was tested on water samples spiked with different concentrations of As(III) (0–20 ppb). A strong linear correlation (R<jats:sup>2</jats:sup> ≈ 0.99) between the frequency shift and concentration with a low detection limit (0.1 ppb) validated the quantitative detection capability of the sensor. This QCM platform with an optimal recognition ligand is a promising field-deployable tool for on-site arsenic analysis in water.</jats:p>

Topics
  • nanocomposite
  • impedance spectroscopy
  • Carbon
  • nanotube
  • thermal analysis
  • copolymer
  • decomposition
  • Arsenic