People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Abdo, Hany S.
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (18/18 displayed)
- 2023Investigating the Mechanical Properties of Annealed 3D-Printed PLA–Date Pits Compositecitations
- 2023Adaptive Neuro-Fuzzy-Based Models for Predicting the Tribological Properties of 3D-Printed PLA Green Composites Used for Biomedical Applicationscitations
- 2023Investigation of the Mechanical and Tribological Behavior of Epoxy-Based Hybrid Compositecitations
- 2023Hydroxyapatite–Clay Composite for Bone Tissue Engineering: Effective Utilization of Prawn Exoskeleton Biowastecitations
- 2023Ecofriendly Biochar as a Low-Cost Solid Lubricating Filler for LDPE Sustainable Biocomposites: Thermal, Mechanical, and Tribological Characterizationcitations
- 2023Casting light on the tribological properties of paraffin-based HDPE enriched with graphene nano-additives: an experimental investigationcitations
- 2023Effect of Synthesized Titanium Dioxide Nanofibers Weight Fraction on the Tribological Characteristics of Magnesium Nanocomposites Used in Biomedical Applicationscitations
- 2022Mechanical Alloying of Ball-Milled Cu–Ti–B Elemental Powder with the In Situ Formation of Titanium Diboridecitations
- 2022Comparative Study into Microstructural and Mechanical Characterization of HVOF-WC-Based Coatingscitations
- 2022Study on the Microstructure of Vanadium-Modified Tungsten High-Speed Steel-Coded SAE-AISI T1 Steelcitations
- 2021Electrochemical Corrosion Behavior of Laser Welded 2205 Duplex Stainless-Steel in Artificial Seawater Environment under Different Acidity and Alkalinity Conditionscitations
- 2021Mitigating Corrosion Effects of Ti-48Al-2Cr-2Nb Alloy Fabricated via Electron Beam Melting (EBM) Technique by Regulating the Immersion Conditionscitations
- 2021Electrochemical Behavior of Inductively Sintered Al/TiO2 Nanocomposites Reinforced by Electrospun Ceramic Nanofiberscitations
- 2020The Cyclic Oxidation and Hardness Characteristics of Thermally Exposed Titanium Prepared by Inductive Sintering-Assisted Powder Metallurgycitations
- 2020Influence of Extrusion Temperature on the Corrosion Behavior in Sodium Chloride Solution of Solid State Recycled Aluminum Alloy 6061 Chipscitations
- 2020Regulating Mechanical Properties of Al/SiC by Utilizing Different Ball Milling Speedscitations
- 2017Effect of Nickel Content on the Corrosion Resistance of Iron-Nickel Alloys in Concentrated Hydrochloric Acid Pickling Solutionscitations
- 2015Corrosion inhibition of cast iron in Arabian Gulf seawater by two different ionic liquidscitations
Places of action
Organizations | Location | People |
---|
article
Casting light on the tribological properties of paraffin-based HDPE enriched with graphene nano-additives: an experimental investigation
Abstract
<jats:title>Abstract</jats:title><jats:p>The impressive mechanical properties and robust resistance to wear recorded by nano-polymeric composites have positioned them as a viable alternative in many applications. When it comes to frictional materials, high-density polyethylene (HDPE) emerges as one of the best candidate materials that can be used. However, it tribological properties need more enhancement to suite with wide variety of applications. The objective of the current study is to identify the optimal loading ratio using a comprise of paraffin oil and nano-graphene with varying loading compositions. Different experiments were carried out to assess the modulus of elasticity, hardness, and strength. Additionally, the friction coefficient and wear resistance of the proposed nanocomposite have been estimated. Surfaces topographies were analyzed to recognize the wear mechanism. The results pointed that samples containing 5% paraffin oil and 0.5 wt% have relatively better mechanical and tribological behavior compared to further compositions; where, a 38% decrease in wear and a 34% reduction in COF compared to other composite samples.</jats:p>