Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Ranjith, R.

  • Google
  • 8
  • 31
  • 143

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (8/8 displayed)

  • 2023Experimental and numerical analysis of intermetallics in Al–Mg friction stir welds2citations
  • 2022Electric Discharge Machining of AZ91 Magnesium Hybrid Composites under Different Dielectric Mediums7citations
  • 2022Electric Discharge Machining of AZ91 Magnesium Hybrid Composites under Different Dielectric Mediums7citations
  • 2022Fabrication of visible-light-responsive TiO2/α-Fe2O3-heterostructured composite for rapid photo-oxidation of organic pollutants in water [Fabrication of visible-light-responsive TiO2/alpha-Fe2O3-heterostructured composite for rapid photo-oxidation of organic pollutants in water]26citations
  • 2010Effect of the external fields on the polar and dielectric properties of Eu0.8Y0.2MnO36citations
  • 2008A multiferroic ceramic with perovskite structure: (La0.5Bi0.5)(Mn0.5Fe0.5)O3.0939citations
  • 2008Ferromagnetism and magnetodielectric effect in insulating LaBiMn4∕3Co2∕3O6 thin films30citations
  • 2008Interfacial contribution to the dielectric response in semiconducting LaBiMn4∕3Co2∕3O626citations

Places of action

Chart of shared publication
Murugasen, Subramanian
1 / 2 shared
Naveenkumar, M.
1 / 1 shared
Venkatesan, S.
2 / 9 shared
Prakash, T.
2 / 6 shared
Mohan, S. Krishna
2 / 3 shared
Krishna Mohan, S.
1 / 2 shared
A., Alharthi F.
1 / 1 shared
Vignesh, S.
1 / 3 shared
Letizia, Bianchi Claudia
1 / 1 shared
Djellabi, R.
1 / 2 shared
Palanivel, B.
1 / 4 shared
Jayamani, N.
1 / 1 shared
Kavitha, S.
1 / 3 shared
Vilela, Smf
1 / 1 shared
Tavares, Pb
1 / 26 shared
Chaves, Mr
1 / 5 shared
Kundys, B.
4 / 6 shared
Almeida, A.
1 / 78 shared
Prellier, W.
1 / 10 shared
Ferreira, Ws
1 / 2 shared
Moreira, Ja
1 / 24 shared
Pralong, Valérie
1 / 8 shared
Prellier, Wilfrid
3 / 45 shared
Kundu, Asish
3 / 3 shared
Raveau, B.
2 / 15 shared
Caignaert, V.
1 / 5 shared
Nguyen, N.
1 / 3 shared
Singh, M.
1 / 14 shared
Laverdière, J.
1 / 1 shared
Jandl, S.
1 / 2 shared
Filippi, M.
2 / 10 shared
Chart of publication period
2023
2022
2010
2008

Co-Authors (by relevance)

  • Murugasen, Subramanian
  • Naveenkumar, M.
  • Venkatesan, S.
  • Prakash, T.
  • Mohan, S. Krishna
  • Krishna Mohan, S.
  • A., Alharthi F.
  • Vignesh, S.
  • Letizia, Bianchi Claudia
  • Djellabi, R.
  • Palanivel, B.
  • Jayamani, N.
  • Kavitha, S.
  • Vilela, Smf
  • Tavares, Pb
  • Chaves, Mr
  • Kundys, B.
  • Almeida, A.
  • Prellier, W.
  • Ferreira, Ws
  • Moreira, Ja
  • Pralong, Valérie
  • Prellier, Wilfrid
  • Kundu, Asish
  • Raveau, B.
  • Caignaert, V.
  • Nguyen, N.
  • Singh, M.
  • Laverdière, J.
  • Jandl, S.
  • Filippi, M.
OrganizationsLocationPeople

article

Experimental and numerical analysis of intermetallics in Al–Mg friction stir welds

  • Murugasen, Subramanian
  • Naveenkumar, M.
  • Ranjith, R.
Abstract

<jats:title>Abstract</jats:title><jats:p>In this research work, it was aimed to analyse the thermal behaviour during FSW in order to understand the diffusion behaviour of Al (AA6061)-Mg (AZ31B) dissimilar joints. Three heat input levels at different weld pitch ratios (WPR) of 0.087, 0.068 and 0.051 are accounted for the analysis. Finite element modelling (FEM) is employed to predict temperature evolutions. From the FEM results and fundamental diffusion equations, the intermetallic thickness and the diffusion behaviour between the Al and Mg material were analyzed and found that the Al-rich intermetallic phases Al<jats:sub>3</jats:sub>Mg<jats:sub>2</jats:sub> grow faster and wider than the Mg-rich phase Al<jats:sub>12</jats:sub>Mg<jats:sub>17</jats:sub>. Tensile test demonstrates that a lower welding pitch ratio (WPR) leads to the formation of thicker intermetallic layers, resulting in reduced tensile strength and joint efficiency. In contrast, a higher WPR (0.087) minimizes intermetallic thickness, yielding superior tensile properties (138mpa). Microhardness measurements at the stir zone reveal a broad range from 70 to 164 HV, signifying mechanical heterogeneity. Microstructural reveals that a complex interplay between Al and Mg materials, resulting in fine equiaxed grains, intermetallic compounds, and distinct flow patterns in the stir zone.</jats:p>

Topics
  • impedance spectroscopy
  • compound
  • grain
  • phase
  • strength
  • tensile strength
  • intermetallic