People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Ullah, Sana
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (13/13 displayed)
- 2024Strengthening of Masonry Structures by Sisal-Reinforced Geopolymers
- 2024Reductive quenching of photosensitizer [Ru(bpy) 3 ] 2+ reveals the inhomogeneous distribution of sites in PAN polymer nanofibers for light-driven redox catalysis †citations
- 2024Fabrication, characterization and antioxidant activities of pectin and gelatin based edible film loaded with <scp><i>Citrus reticulata</i></scp> L. essential oilcitations
- 2024Reductive quenching of photosensitizer [Ru(bpy)3]2+ reveals the inhomogeneous distribution of sites in PAN polymer nanofibers for light-driven redox catalysiscitations
- 2023A novel film based on a cellulose/sodium alginate/gelatin composite activated with an ethanolic fraction of <i>Boswellia sacra</i> oleo gum resincitations
- 2023Functional bioinspired nanocomposites for anticancer activity with generation of reactive oxygen species
- 2023Physicochemical Characterization and Antioxidant Properties of Chitosan and Sodium Alginate Based Films Incorporated with Ficus Extractcitations
- 2022Synthesis and Characterization of High-Efficiency Halide Perovskite Nanomaterials for Light-Absorbing Applications
- 2022A comprehensive DFT study to evaluate the modulation in the band gap, elastic, and optical behaviour of CsPbBr<sub>3</sub> under the effect of stresscitations
- 2020Solution combustion synthesis of transparent conducting thin films for sustainable photovoltaic applicationscitations
- 2020Solution combustion synthesis of transparent conducting thin films for sustainable photovoltaic applicationscitations
- 2018Boosting highly transparent and conducting indium zinc oxide thin films through solution combustion synthesis: Influence of rapid thermal annealingcitations
- 2017Mechanical characterization of stacked thin films: The cases of aluminum zinc oxide and indium zinc oxide grown by solution and combustion synthesiscitations
Places of action
Organizations | Location | People |
---|
article
A comprehensive DFT study to evaluate the modulation in the band gap, elastic, and optical behaviour of CsPbBr<sub>3</sub> under the effect of stress
Abstract
<jats:title>Abstract</jats:title><jats:p>The computational Generalized Gradient Approximations (GGA) are applied on cubic Cesium Lead Bromide (CsPbBr<jats:sub>3</jats:sub>) with different stress values of 0, 5, 10, and 15 GPa for a supercell with PBE exchange relationship parameters to study the structural, mechanical, and optoelectronic characteristics. This study aims to determine how stress affects structural and electronic properties, how optical behaviour changes in reaction to electronic change, and how mechanical properties change as a result. The structure remains cubic, and there is no phase shift, but a reduction in the lattice parameters is seen. The reduction in band gap (1.900 eV) is found from 0–15 GPa and zero at 17 GPa. The partial densities of states (PDOS) of bulk CsPbBr<jats:sub>3</jats:sub>, Cs, Pb, and Br are also calculated. The partial density states PDOS of bulk CsPbBr<jats:sub>3</jats:sub> show that in the valence band range, the sharpest observed peak is for <jats:italic>d</jats:italic>-states, while in the conduction region, the sharpest peak is for <jats:italic>p</jats:italic>-states and then for <jats:italic>s</jats:italic>-states. The significant variation in values of absorption, conductivity (imaginary and real), dielectric function (imaginary and real), loss function, reflectivity, and refractive index (imaginary and real) are found by applying stresses of 0, 5, 10, 15 GPa. Using the energy deformation relationship, the elastic constants are computed. From these constants, various mechanical characteristics such as the bulk modulus, shear modulus, Young modulus, and Poisson ratio are derived and discussed. Additionally, it is a good component in optoelectronic devices due to its high refractive index, absorption, reflectivity, and conductivity.</jats:p>