Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Khan, Muhammad Ijaz

  • Google
  • 1
  • 4
  • 22

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (1/1 displayed)

  • 2022A comprehensive DFT study to evaluate the modulation in the band gap, elastic, and optical behaviour of CsPbBr<sub>3</sub> under the effect of stress22citations

Places of action

Chart of shared publication
Tanveer, Muhammad
1 / 1 shared
Sahar, M. Sana Ullah
1 / 1 shared
Ullah, Sana
1 / 13 shared
Gillani, Sajid
1 / 5 shared
Chart of publication period
2022

Co-Authors (by relevance)

  • Tanveer, Muhammad
  • Sahar, M. Sana Ullah
  • Ullah, Sana
  • Gillani, Sajid
OrganizationsLocationPeople

article

A comprehensive DFT study to evaluate the modulation in the band gap, elastic, and optical behaviour of CsPbBr<sub>3</sub> under the effect of stress

  • Tanveer, Muhammad
  • Sahar, M. Sana Ullah
  • Ullah, Sana
  • Khan, Muhammad Ijaz
  • Gillani, Sajid
Abstract

<jats:title>Abstract</jats:title><jats:p>The computational Generalized Gradient Approximations (GGA) are applied on cubic Cesium Lead Bromide (CsPbBr<jats:sub>3</jats:sub>) with different stress values of 0, 5, 10, and 15 GPa for a supercell with PBE exchange relationship parameters to study the structural, mechanical, and optoelectronic characteristics. This study aims to determine how stress affects structural and electronic properties, how optical behaviour changes in reaction to electronic change, and how mechanical properties change as a result. The structure remains cubic, and there is no phase shift, but a reduction in the lattice parameters is seen. The reduction in band gap (1.900 eV) is found from 0–15 GPa and zero at 17 GPa. The partial densities of states (PDOS) of bulk CsPbBr<jats:sub>3</jats:sub>, Cs, Pb, and Br are also calculated. The partial density states PDOS of bulk CsPbBr<jats:sub>3</jats:sub> show that in the valence band range, the sharpest observed peak is for <jats:italic>d</jats:italic>-states, while in the conduction region, the sharpest peak is for <jats:italic>p</jats:italic>-states and then for <jats:italic>s</jats:italic>-states. The significant variation in values of absorption, conductivity (imaginary and real), dielectric function (imaginary and real), loss function, reflectivity, and refractive index (imaginary and real) are found by applying stresses of 0, 5, 10, 15 GPa. Using the energy deformation relationship, the elastic constants are computed. From these constants, various mechanical characteristics such as the bulk modulus, shear modulus, Young modulus, and Poisson ratio are derived and discussed. Additionally, it is a good component in optoelectronic devices due to its high refractive index, absorption, reflectivity, and conductivity.</jats:p>

Topics
  • density
  • impedance spectroscopy
  • phase
  • density functional theory
  • bulk modulus