Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Odonnell, Shane

  • Google
  • 2
  • 13
  • 12

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (2/2 displayed)

  • 2022Growth chemistry of cobalt nitride by plasma enhanced atomic layer deposition2citations
  • 2021Thermal and plasma enhanced atomic layer deposition of ultrathin TiO2 on silicon from amide and alkoxide precursors: growth chemistry and photoelectrochemical performance10citations

Places of action

Chart of shared publication
Weiland, C.
1 / 2 shared
Oneill, D.
1 / 2 shared
Snelgrove, Matthew
2 / 10 shared
Oconnor, Robert
2 / 15 shared
Mcfeely, C.
1 / 3 shared
Woicik, J.
1 / 1 shared
Jose, F.
1 / 1 shared
Hughes, Greg
1 / 13 shared
Shiel, K.
1 / 1 shared
Shiel, Kyle
1 / 3 shared
Mcfeely, Caitlin
1 / 4 shared
Jose, Feljin
1 / 2 shared
Mcgill, E.
1 / 1 shared
Chart of publication period
2022
2021

Co-Authors (by relevance)

  • Weiland, C.
  • Oneill, D.
  • Snelgrove, Matthew
  • Oconnor, Robert
  • Mcfeely, C.
  • Woicik, J.
  • Jose, F.
  • Hughes, Greg
  • Shiel, K.
  • Shiel, Kyle
  • Mcfeely, Caitlin
  • Jose, Feljin
  • Mcgill, E.
OrganizationsLocationPeople

article

Growth chemistry of cobalt nitride by plasma enhanced atomic layer deposition

  • Weiland, C.
  • Oneill, D.
  • Snelgrove, Matthew
  • Odonnell, Shane
  • Oconnor, Robert
  • Mcfeely, C.
  • Woicik, J.
  • Jose, F.
  • Hughes, Greg
  • Shiel, K.
Abstract

<jats:title>Abstract</jats:title><jats:p>State-of-the-art atomic layer deposition (ALD) and photoemission characterisation are applied to grow and characterise cobalt nitride, a material that has applications in renewable energy and semiconductor technologies. The growth process is characterised using an <jats:italic>in situ</jats:italic> cycle-by-cycle methodology to identify the main factors which underpin optimal material growth. The role of co-reactant dosing and substrate temperature is analysed in detail to demonstrate the impact these parameters have on the overall composition of the film. The <jats:italic>in situ</jats:italic> approach, combined with high-energy synchrotron-based photoemission studies of the resulting films, enables understanding of the bulk chemical properties without need for physical removal of material by sputtering. The results provide an insight into optimising plasma assisted ALD processes for deposition of cobalt nitride, and strategies for minimizing carbon incorporation into the film from the precursor ligands.</jats:p>

Topics
  • impedance spectroscopy
  • Carbon
  • semiconductor
  • nitride
  • cobalt
  • atomic layer deposition