Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Ahmed, Hemn Unis

  • Google
  • 1
  • 5
  • 31

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (1/1 displayed)

  • 2022The behavior of sustainable self-compacting concrete reinforced with low-density waste Polyethylene fiber31citations

Places of action

Chart of shared publication
Ali, Taghreed Khaleefa Mohammed
1 / 1 shared
Vali, Kolimi Shaiksha
1 / 2 shared
Mosavi, Amir
1 / 3 shared
Bheel, Naraindas
1 / 11 shared
Faraj, Rabar H.
1 / 2 shared
Chart of publication period
2022

Co-Authors (by relevance)

  • Ali, Taghreed Khaleefa Mohammed
  • Vali, Kolimi Shaiksha
  • Mosavi, Amir
  • Bheel, Naraindas
  • Faraj, Rabar H.
OrganizationsLocationPeople

article

The behavior of sustainable self-compacting concrete reinforced with low-density waste Polyethylene fiber

  • Ali, Taghreed Khaleefa Mohammed
  • Ahmed, Hemn Unis
  • Vali, Kolimi Shaiksha
  • Mosavi, Amir
  • Bheel, Naraindas
  • Faraj, Rabar H.
Abstract

<jats:title>Abstract</jats:title><jats:p>Sustainable concrete production and recycling the construction wastes are of utmost importance for today’s sustainable urban development. In this study, low-density polyethylene waste was recycled in the form of fibers (LDPF) to produce eco-friendly fiber-reinforced sustainable self-compacting concrete (SCC). The content of LDPF ranged from 0.5% to 3.5% at a raise of 0.5% of the mix’s volume. The SCC’s features in fresh and hardened states were tested. The slump flow diameter, T<jats:sub>500</jats:sub>, V-funnel, and L-box ratio were measured for the fresh properties. The compressive, splitting tensile and flexural strengths were tested at the age of 28 days. However, the outcomes indicated that LPDF had some negative effect on the workability features, but all the results of SCC mixtures were within the standard limitations of SCC except that related to the L-box, which satisfied the standards up to 2% of LDPF. However, the incorporation of LDPF enhanced the mechanical properties, especially the flexural strength. The optimum ratio for the LPDF was 2%, which satisfies the required workability and the highest strength with modulus of elasticity. The thermal conductivity decreased with increasing LDPF content in the SCC mixtures.</jats:p>

Topics
  • density
  • strength
  • flexural strength
  • elasticity
  • thermal conductivity