Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Sathishkumar, M.

  • Google
  • 2
  • 6
  • 5

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (2/2 displayed)

  • 2022Performance of air plasma sprayed Cr3C2–25NiCr and NiCrMoNb coated X8CrNiMoVNb16–13 alloy subjected to high temperature corrosion environmentcitations
  • 2022Hot corrosion behaviour of constant and pulsed current welded Hastelloy X in Na<sub>2</sub>SO<sub>4</sub>, V<sub>2</sub>O<sub>5</sub>, and NaCl salt mixture at 900 °C5citations

Places of action

Chart of shared publication
Sivanraju, Rajkumar
2 / 6 shared
Arivazhagan, N.
2 / 4 shared
Manikandan, M.
2 / 6 shared
Subramani, P.
1 / 11 shared
Balasubramanian, Arulmurugan
1 / 1 shared
M., Dr. Vignesh
1 / 6 shared
Chart of publication period
2022

Co-Authors (by relevance)

  • Sivanraju, Rajkumar
  • Arivazhagan, N.
  • Manikandan, M.
  • Subramani, P.
  • Balasubramanian, Arulmurugan
  • M., Dr. Vignesh
OrganizationsLocationPeople

article

Hot corrosion behaviour of constant and pulsed current welded Hastelloy X in Na<sub>2</sub>SO<sub>4</sub>, V<sub>2</sub>O<sub>5</sub>, and NaCl salt mixture at 900 °C

  • Sivanraju, Rajkumar
  • Sathishkumar, M.
  • Arivazhagan, N.
  • Manikandan, M.
  • Balasubramanian, Arulmurugan
  • M., Dr. Vignesh
Abstract

<jats:title>Abstract</jats:title><jats:p>The high-temperature corrosion behavior of constant current gas tungsten arc (GTA) and pulsed current gas tungsten arc (PCGTA) welded Hastelloy X with different filler wires (C263 and ERNiCr-3) are studied for 50 cycles at 900 °C. Molten salt I (MS I) (75% Na<jats:sub>2</jats:sub>SO<jats:sub>4</jats:sub> + 25% V<jats:sub>2</jats:sub>O<jats:sub>5</jats:sub>) and molten salt II (MS II) (75% Na<jats:sub>2</jats:sub>SO<jats:sub>4</jats:sub> + 20% V<jats:sub>2</jats:sub>O<jats:sub>5</jats:sub> + 5% NaCl) were coated on the welded specimens. MS II coated substrate shows the highest weight gain than MS I with a parabolic constant for GTA ERNiCr-3 as 21.440 × 10<jats:sup>–6</jats:sup> mg<jats:sup>2</jats:sup>/(cm<jats:sup>4</jats:sup>.s). Whereas PCGTA C263 welded sample with MS I, revealed parabolic constant (lowest) of 0.008 × 10<jats:sup>–6</jats:sup> mg<jats:sup>2</jats:sup>/ (cm<jats:sup>4</jats:sup>.s). Based on the results, an increasing pattern of hot corrosion resistance of substrates is arranged as GTA ERNiCr-3 &lt; GTA C263 &lt; PCGTA C263 &lt; PCGTA ERNiCr-3. PCGTA shows more refined grains, higher grain boundary volume, better corrosion resistance, and more protective phases like Cr<jats:sub>2</jats:sub>O<jats:sub>3</jats:sub>, NiO, NiCr<jats:sub>2</jats:sub>O<jats:sub>4</jats:sub>, CoCr<jats:sub>2</jats:sub>O<jats:sub>4</jats:sub>, Al<jats:sub>2</jats:sub>O<jats:sub>3</jats:sub>, NiFe<jats:sub>2</jats:sub>O<jats:sub>4</jats:sub>, NbO than GTA weldment. But phases such as Fe<jats:sub>2</jats:sub>O<jats:sub>3</jats:sub>, MoO<jats:sub>3</jats:sub>, and Cr<jats:sub>2</jats:sub>S<jats:sub>3</jats:sub> (non-protective phases) decrease corrosion resistance due to acid fluxing of alloying elements that promote the oxide scale exfoliation, spallation, chipping, and cracking. This study observed that PCGTA with C263 filler in MS I and MS II environment provides good corrosion resistance at high temperatures.</jats:p>

Topics
  • impedance spectroscopy
  • grain
  • corrosion
  • phase
  • grain boundary
  • mass spectrometry
  • tungsten
  • wire