Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Osakoo, Nattawut

  • Google
  • 1
  • 3
  • 7

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (1/1 displayed)

  • 2020Formation of EMT/FAU intergrowth and nanosized SOD zeolites from synthesis gel of zeolite NaX containing ethanol7citations

Places of action

Chart of shared publication
Föttinger, Karin
1 / 8 shared
Jantarit, Nawee
1 / 1 shared
Tayraukham, Pimwipa
1 / 1 shared
Chart of publication period
2020

Co-Authors (by relevance)

  • Föttinger, Karin
  • Jantarit, Nawee
  • Tayraukham, Pimwipa
OrganizationsLocationPeople

article

Formation of EMT/FAU intergrowth and nanosized SOD zeolites from synthesis gel of zeolite NaX containing ethanol

  • Föttinger, Karin
  • Jantarit, Nawee
  • Tayraukham, Pimwipa
  • Osakoo, Nattawut
Abstract

<jats:title>Abstract</jats:title><jats:p>Ethanol can serve as an organic additive in zeolite synthesis due to the ease of availability and simple removal. It can influence the crystallization leading to zeolites with different phases and morphology. This study explores the effect of partial displacement of water in the synthesis gel of zeolite NaX by various amounts of ethanol. With one-pot synthesis, the gels with different ethanol/water molar ratios are crystallized 90 °C for 18 h under a static condition. The products are characterized by several techniques including X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FTIR), scanning and transmission electron microscopy (SEM and TEM), nitrogen sorption analysis, inductively coupled plasma-optical emission spectrometry (ICP-OES), and thermogravimetric analysis (TGA). The ethanol/water molar ratio of 0.045 produces EMT/FAU intergrowth with a hollow structure and undefined shapes. The ratios of 0.412 and 0.628 give the aggregates of nanocrystalline SOD zeolite. Moreover, the molar ratios of 0.101, 0.174 and 0.273 provide a mixture of the three phases. All zeolite products contain both intrinsic micropores and interparticle mesopores. The higher ethanol/water molar ratio in the gel produces the zeolites with the lower Si/Al ratio due to the higher Al incorporation in the zeolite structure. In summary, we demonstrate alternative template-free approaches to synthesize EMT/FAU intergrowth and nanosized SOD zeolite with short crystallization time and low crystallization temperature. The finding is an example of ethanol influence on the crystallization to control the phase and morphology of zeolite.</jats:p>

Topics
  • impedance spectroscopy
  • morphology
  • phase
  • scanning electron microscopy
  • x-ray diffraction
  • Nitrogen
  • transmission electron microscopy
  • thermogravimetry
  • Fourier transform infrared spectroscopy
  • crystallization
  • spectrometry
  • atomic emission spectroscopy
  • crystallization temperature