Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Kumaran, S. Senthil

  • Google
  • 1
  • 1
  • 29

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (1/1 displayed)

  • 2020Effect of nanoparticles loading on free vibration response of epoxy and filament winding basalt/epoxy and E-glass/epoxy composite tubes: experimental, analytical and numerical investigations29citations

Places of action

Chart of shared publication
Naresh, K.
1 / 3 shared
Chart of publication period
2020

Co-Authors (by relevance)

  • Naresh, K.
OrganizationsLocationPeople

article

Effect of nanoparticles loading on free vibration response of epoxy and filament winding basalt/epoxy and E-glass/epoxy composite tubes: experimental, analytical and numerical investigations

  • Naresh, K.
  • Kumaran, S. Senthil
Abstract

<jats:title>Abstract</jats:title><jats:p>In recent times, basalt fiber reinforced polymer (BFRP) nanocomposites is being increasingly used in aerospace applications such as wing and fuselage structures of the aircraft and outer casings of the rocket, automobile engine drive shafts and fuel tanks in the oil and gas industries, which fills the gap between carbon and E-glass fiber reinforced polymer nanocomposites. These structures are subjected to vibrations and exposed to different temperatures in various places during their service life. However, the comparison of vibration response of silica particles reinforced basalt/epoxy and glass/epoxy nanocomposite tubes in all three approaches, namely, experimental, analytical and numerical (Finite Element Modeling), have not found elsewhere. Analytical and numerical approaches minimize time, manpower and cost. Therefore, investigating the vibration response of different weight contents of these FRP nanocomposite tubes is novel and essential. Hence, in this study, the vibration response of silica nanoparticles reinforced epoxy, basalt/epoxy and E-glass/epoxy composites with different weight contents (0, 0.5, 1 and 1.5%) were investigated. The vibration tests were performed at three different boundary conditions such as cantilever, simply supported and fixed-fixed. The first three modes of vibration were considered for analysis. Besides, the heat deflection temperature and the hardness properties were also studied. The results indicate that the natural frequencies were higher for the fixed-fixed case and the damping parameters were higher for the simply supported case. Vibration properties, heat deflection temperature and hardness values were found to be higher in fiber-reinforced nanocomposites than those of epoxy nanocomposites. The data presented in this study will be useful to generate the numerical models for the ground vibration test (GVT).</jats:p>

Topics
  • nanoparticle
  • nanocomposite
  • impedance spectroscopy
  • polymer
  • Carbon
  • glass
  • glass
  • hardness