Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Phiri, R. R.

  • Google
  • 2
  • 4
  • 0

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (2/2 displayed)

  • 2020Influence of deposition parameters on the residual stresses of WC-Wo sputtered thin filmscitations
  • 2019Synchrotron radiation characterization of magnetron sputtered WC-Co thin films on mild steel substratecitations

Places of action

Chart of shared publication
Akinlabi, Esther Titilayo
2 / 235 shared
Oladijo, O. P.
2 / 15 shared
Rattanachata, A.
1 / 2 shared
Nakajima, H.
1 / 2 shared
Chart of publication period
2020
2019

Co-Authors (by relevance)

  • Akinlabi, Esther Titilayo
  • Oladijo, O. P.
  • Rattanachata, A.
  • Nakajima, H.
OrganizationsLocationPeople

article

Synchrotron radiation characterization of magnetron sputtered WC-Co thin films on mild steel substrate

  • Phiri, R. R.
  • Akinlabi, Esther Titilayo
  • Rattanachata, A.
  • Nakajima, H.
  • Oladijo, O. P.
Abstract

<p>Mild steel offers versatile properties at lower costs. This has given the alloy a large application base in the industry. However, the increasing complexity and severity of service environments have shifted the focus of many industries to structure modification techniques, like physical vapor deposition to improve material properties and performance. Synthesis of WC-Co thin films by physical vapor deposition technology has attracted great research interest owing to the outstanding mechanical properties of the material and its potential to be utilized extreme engineering applications such as in wear-resistance, heavy cutting and excavation industries. The growth in the use of WC-Co thin films in the general mechanical industry is however slow due to lack of data on the tribological characteristics of WC-Co coated materials. Control and manipulation of synthesis parameters are of significant concern in order to tailor such material properties and performance. The focus of this paper is to, therefore, investigate the effect of Rf magnetron power and deposition temperature on the structure and sliding wear behavior of WC-Co thin film. The surface morphology and nature were acquired using x-ray photoelectron spectroscopy (XPS) and Grazing Incidence x-ray absorption spectroscopy (GI-XAS). To validate the synchrotron results, additional analysis was acquired from Scanning electron microscopy (SEM), Raman spectroscopy and surface profilometry to predict and point out optimum synthesis parameters for best properties of the film. Finally, the wear performance of the film-substrate system was determined and reported.</p>

Topics
  • impedance spectroscopy
  • surface
  • scanning electron microscopy
  • thin film
  • x-ray photoelectron spectroscopy
  • physical vapor deposition
  • steel
  • Raman spectroscopy
  • x-ray absorption spectroscopy
  • profilometry