Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Abdulrahman, K. O.

  • Google
  • 2
  • 3
  • 12

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (2/2 displayed)

  • 2019Characteristics of laser metal deposited titanium aluminide11citations
  • 2018Advanced manufacturing of compositionally graded composite materials1citations

Places of action

Chart of shared publication
Mahamood, Rasheedat
2 / 70 shared
Akinlabi, Esther Titilayo
2 / 235 shared
Owolabi, G. M.
1 / 1 shared
Chart of publication period
2019
2018

Co-Authors (by relevance)

  • Mahamood, Rasheedat
  • Akinlabi, Esther Titilayo
  • Owolabi, G. M.
OrganizationsLocationPeople

article

Characteristics of laser metal deposited titanium aluminide

  • Mahamood, Rasheedat
  • Akinlabi, Esther Titilayo
  • Abdulrahman, K. O.
Abstract

<p>The unique properties of titanium and its alloys make them a continuous area of interest for the material researchers and high profile material industries. Titanium and its alloys possess high strength-to-weight ratio and excellent corrosion resistance properties which made them very useful for high temperature applications especially in areas such as energy generation, automobile and aeronautic industries. In this paper, the effect of deposition parameters on the properties of laser fabricated titanium aluminide alloy was studied. Titanium aluminide powder (Ti-4822-4) was deposited on pure titanium substrate using laser engineered net shaping (LENS) technique of additive manufacturing. Processing parameters like the laser power, scanning speed and powder flow rate were varied. Laser power was varied between 300 to 500 W, scanning speed varied between 3.174 to 7.406mms<sup>-1</sup> and powder flow rate varied between 4.09 to 7.12 g min<sup>-1</sup>. The design and analysis of the results was carried out using design expert 6.0.8 software. The trends in deposits cracks, heights and microhardness in relation to the deposition parameters have been studied. The outcome of the study showed that cracks in the deposits reduced as the laser power increases and scanning speed reduces. It was also revealed that the overall microhardness increases as the laser power, scanning speed and powder flow rate increases. The height of the deposits increases as the laser power increases, scanning speed decreases and powder flow rate increases. Microscopic images of the deposits revealed massive presence of γ-TiAl and isolated lamellar region of γ-TiAl and Ti3Al.</p>

Topics
  • Deposition
  • corrosion
  • crack
  • strength
  • titanium
  • additive manufacturing
  • aluminide