People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Häntzsche, Eric Martin
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (23/23 displayed)
- 2023Weft-knitted active joints for smart composite applications
- 2023Investigation of the Bonding Mechanism between Overlapping Textile Layers for FRP Repair Based on Dry Textile Patchescitations
- 2023Development of fiber-based piezoelectric sensors for the load monitoring of dynamically stressed fiber-reinforced compositescitations
- 2023Advancing Smart Textiles: Structural Evolution of Knitted Piezoresistive Strain Sensors for Enabling Precise Motion Capturecitations
- 2022Hinged Adaptive Fiber-Rubber Composites Driven by Shape Memory Alloys—Development and Simulationcitations
- 2022Protective Coating for Electrically Conductive Yarns for the Implementation in Smart Textilescitations
- 2022From Grave to Cradle - Development of Weft Knitted Fabrics Based on Hybrid Yarns from Recycled Carbon Fibre Reclaimed by Solvolytic Process from of EOL-Componentscitations
- 2022Experimental and Numerical Analysis of the Deformation Behavior of Adaptive Fiber-Rubber Composites with Integrated Shape Memory Alloyscitations
- 2022Recycling of Carbon Fibres and Subsequent Upcycling for the Production of 3D-CFRP Partscitations
- 2021Novel Repair Procedure for CFRP Components Instead of EOLcitations
- 2020Electro-mechanical characterization of shape memory alloy hybrid yarn based adaptive fiber-reinforced plasticscitations
- 2020In-situ load-monitoring of CFRP components using integrated carbon rovings as strain sensors
- 2020Matrix Decomposition of Carbon-Fiber-Reinforced Plastics via the Activation of Semiconductorscitations
- 2019Influence of Carbon Roving Strain Sensory Elements on the Mechanical Properties of Carbon Fibre-Reinforced Compositescitations
- 2019Integrated textile-based strain sensors for load monitoring of dynamically stressed CFP components
- 2019On the development of a function-integrative sleeve for medical applications
- 2019Integrierbare textilbasierte Dehnungssensoren für das Load-Monitoring dynamisch beanspruchter CFK-Bauteile
- 2018Multifunctional components from carbon concrete composites C³ - integrated, textile-based sensor solutions for in situ structural monitoring of adaptive building envelopescitations
- 2018Multiple functional coating highly inert fiber surfaces of para-aramid filament yarncitations
- 2017Multi-layered sensor yarns for in situ monitoring of textile reinforced compositescitations
- 2016Manufacturing technology of integrated textile-based sensor networks for in situ monitoring applications of composite wind turbine bladescitations
- 2015Integrative manufacturing of textile-based sensors for spatiallyl-resolved structural health monitoring tasks of large-scaled composite components.citations
- 2013A2.2 - Sensory characteristics of carbon fiber based strain sensors and integration techniques into textile reinforced structures for in situ monitoring of thermoplastic composites
Places of action
Organizations | Location | People |
---|
article
Multiple functional coating highly inert fiber surfaces of para-aramid filament yarn
Abstract
<p>High-performance textile filament yarns such as para-aramid filament yarn (p-AF) will be used as the base material for the development of sensor yarns (SY) because p-AF offer high tensile strengths and moduli of elasticity, as well as high decomposition temperatures and elongation. However, p-AF has an inert or hydrophobic surface, i.e. a lower polar fraction of the total surface energy that does not allow metallization. The aim of this work is the development of a multifunctional sensor yarn consisting of inert and hydrophobic p-AF. By applying new technologies developed at the Institute of Textile Machinery and Textile High Performance Materials Technology, a homogeneous, completely coated first (1st) and second (2nd) silver layer was built on the p-AF filament yarn surface. The first silver layer monitors the damage in the thermoplastic composite globally and the second silver layer locally. Between two silver layers is an insulation layer. Thus, three layers are built on the p-AF surface. The surface morphology has been determined by light and scanning electron microscopy to assess the Ag layer properties such as structure, homogeneity, and cracking. For structural analysis, p-AF were investigated using a Fourier transform infrared spectrometer. The dispersive and polar component of the surface energy of the treated and pretreated p-AF was measured by using a single fiber Tensiometer (Kruess K100. The Ag and insulation layer thickness was determined after coating and metallization. Textile physical tests of the tensile strength, elasticity modulus, elongation at break and filament yarn fineness of the p-AF before and after the silvering were carried out. The length related electrical resistance of the 1st and 2nd silver layer of the p-AF filament yarns was measured by a Multimeter Fluke 45 (Fluka Germany GmbH) with two wire methods.</p>