Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Selter, Sebastian

  • Google
  • 2
  • 7
  • 41

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (2/2 displayed)

  • 2024The interplay of topology and antiferromagnetic order in two-dimensional van der Waals crystals of (NixFe1-x)2P2S63citations
  • 2021Crystal Growth, Structure and Anisotropic Magnetic Properties of Quasi-2D Materials38citations

Places of action

Chart of shared publication
Büchner, B.
1 / 41 shared
Shemerliuk, Y.
1 / 1 shared
Pal, K.
1 / 2 shared
Kumar, Pradeep
1 / 8 shared
Kumar, V.
1 / 29 shared
Aswartham, S.
1 / 2 shared
Kumar, Deepu
1 / 1 shared
Chart of publication period
2024
2021

Co-Authors (by relevance)

  • Büchner, B.
  • Shemerliuk, Y.
  • Pal, K.
  • Kumar, Pradeep
  • Kumar, V.
  • Aswartham, S.
  • Kumar, Deepu
OrganizationsLocationPeople

article

The interplay of topology and antiferromagnetic order in two-dimensional van der Waals crystals of (NixFe1-x)2P2S6

  • Büchner, B.
  • Selter, Sebastian
  • Shemerliuk, Y.
  • Pal, K.
  • Kumar, Pradeep
  • Kumar, V.
  • Aswartham, S.
  • Kumar, Deepu
Abstract

<jats:title>Abstract</jats:title><jats:p>The Mermin–Wagner theorem forbids spontaneous symmetry breaking of spins in one/two-dimensional (2D) systems at a finite temperature and rules out the stabilization of this ordered state. However, it does not apply to all types of phase transitions in low dimensions, such as the topologically ordered phase rigorously shown by Berezinskii–Kosterlitz–Thouless (BKT) and experimentally realized in very limited systems such as superfluids and superconducting thin films. Quasi-2D van der Waals magnets provide an ideal platform to investigate the fundamentals of low-dimensional magnetism. We explored the quasi-2D honeycomb antiferromagnetic single crystals of (Ni<jats:italic><jats:sub>x</jats:sub></jats:italic>Fe<jats:sub>1−<jats:italic>x</jats:italic></jats:sub>)<jats:sub>2</jats:sub>P<jats:sub>2</jats:sub>S<jats:sub>6</jats:sub> (<jats:italic>x</jats:italic> = 1, 0.7, 0.5, 0.3, and 0) using in-depth temperature-dependent Raman measurements supported by first-principles calculations of the phonon frequencies. Quite surprisingly, we observed renormalization of the phonon modes much below the long-range magnetic ordered temperature attributed to the topological ordered state, namely the BKT phase, which is also found to change as a function of doping. The extracted critical exponent of the order-parameter (spin–spin correlation length, <jats:inline-formula><jats:tex-math/><mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" overflow="scroll"><mml:mrow><mml:mi>ξ</mml:mi><mml:mo stretchy="false">(</mml:mo><mml:mi>T</mml:mi><mml:mo stretchy="false">)</mml:mo></mml:mrow></mml:math><jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="tdmad3e0aieqn1.gif" xlink:type="simple"/></jats:inline-formula>) evinces the signature of a topologically active state driven by vortex–antivortex excitations. As a function of doping, a tunable transition from paramagnetic to antiferromagnetic ordering is shown via phonons reflected in the strong renormalization of the self-energy parameters of the Raman active phonon modes. The extracted exchange parameter (<jats:italic>J</jats:italic>) is found to vary by ∼100% by increasing the value of doping, ranging from ∼6 meV (for <jats:italic>x</jats:italic> = 0.3) to 13 meV (for <jats:italic>x</jats:italic> = 1).</jats:p>

Topics
  • impedance spectroscopy
  • single crystal
  • thin film
  • phase transition
  • two-dimensional
  • phonon modes
  • ordered phase