Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Wolff, Christian

  • Google
  • 8
  • 25
  • 149

University of Southern Denmark

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (8/8 displayed)

  • 2024Self-hybridisation between interband transitions and Mie modes in dielectric nanoparticles5citations
  • 2023Photon superbunching in cathodoluminescence of excitons in WS 2 monolayer12citations
  • 2023Photon superbunching in cathodoluminescence of excitons in WS2 monolayer12citations
  • 2023Photon superbunching in cathodoluminescence of excitons in WS2 monolayer12citations
  • 2022Extremely confined gap plasmon modes43citations
  • 2022Extremely confined gap plasmon modes:when nonlocality matters43citations
  • 2021Anisotropic second-harmonic generation from monocrystalline gold flakes11citations
  • 2021Anisotropic second-harmonic generation from monocrystalline gold flakes11citations

Places of action

Chart of shared publication
Tserkezis, Christos
1 / 3 shared
Stamatopoulou, P. Elli
1 / 1 shared
Mortensen, N. Asger
8 / 30 shared
Stenger, Nicolas
2 / 14 shared
Thomaschewski, Martin
3 / 5 shared
Booth, Timothy J.
1 / 10 shared
Wang, Jianfang
3 / 3 shared
Boroviks, Sergejs
7 / 9 shared
Morozov, Sergii
3 / 3 shared
Iliushyn, Leonid
3 / 3 shared
Fiedler, Saskia
3 / 6 shared
Booth, Tim
1 / 4 shared
Booth, Timothy
1 / 9 shared
Bozhevolnyi, Sergey I.
4 / 35 shared
Ziegler, Mario
2 / 5 shared
Zenin, Vladimir A.
2 / 3 shared
Huang, Jer Shing
2 / 2 shared
Lin, Zhan Hong
2 / 2 shared
Dellith, Andrea
2 / 7 shared
Gonçalves, Paulo André D.
1 / 1 shared
Gonçalves, P. A. D.
1 / 1 shared
Abajo, F. Javier García De
2 / 6 shared
Cox, Joel D.
2 / 15 shared
Echarri, Álvaro Rodríguez
2 / 3 shared
Yezekyan, Torgom
1 / 1 shared
Chart of publication period
2024
2023
2022
2021

Co-Authors (by relevance)

  • Tserkezis, Christos
  • Stamatopoulou, P. Elli
  • Mortensen, N. Asger
  • Stenger, Nicolas
  • Thomaschewski, Martin
  • Booth, Timothy J.
  • Wang, Jianfang
  • Boroviks, Sergejs
  • Morozov, Sergii
  • Iliushyn, Leonid
  • Fiedler, Saskia
  • Booth, Tim
  • Booth, Timothy
  • Bozhevolnyi, Sergey I.
  • Ziegler, Mario
  • Zenin, Vladimir A.
  • Huang, Jer Shing
  • Lin, Zhan Hong
  • Dellith, Andrea
  • Gonçalves, Paulo André D.
  • Gonçalves, P. A. D.
  • Abajo, F. Javier García De
  • Cox, Joel D.
  • Echarri, Álvaro Rodríguez
  • Yezekyan, Torgom
OrganizationsLocationPeople

article

Photon superbunching in cathodoluminescence of excitons in WS2 monolayer

  • Wolff, Christian
  • Stenger, Nicolas
  • Thomaschewski, Martin
  • Wang, Jianfang
  • Boroviks, Sergejs
  • Morozov, Sergii
  • Mortensen, N. Asger
  • Iliushyn, Leonid
  • Fiedler, Saskia
  • Booth, Timothy
Abstract

<p>Cathodoluminescence spectroscopy in conjunction with second-order auto-correlation measurements of g 2 ( τ ) allows to extensively study the synchronization of photon emitters in low-dimensional structures. Co-existing excitons in two-dimensional transition metal dichalcogenide monolayers provide a great source of identical photon emitters which can be simultaneously excited by an electron. Here, we demonstrate large photon bunching with g 2 ( 0 ) up to 156 ± 16 of a tungsten disulfide monolayer (WS<sub>2</sub>), exhibiting a strong dependence on the electron-beam current. To further improve the excitation synchronization and the electron-emitter interaction, we show exemplary that the careful selection of a simple and compact geometry—a thin, monocrystalline gold nanodisk—can be used to realize a record-high bunching g 2 ( 0 ) of up to 2152 ± 236 . This approach to control the electron excitation of excitons in a WS<sub>2</sub> monolayer allows for the synchronization of photon emitters in an ensemble, which is important to further advance light information and computing technologies.</p>

Topics
  • impedance spectroscopy
  • gold
  • two-dimensional
  • tungsten