Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Pentzer, Emily

  • Google
  • 3
  • 23
  • 87

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (3/3 displayed)

  • 2022Electrically conductive porous Ti3C2Tx MXene-polymer composites from high internal phase emulsions (HIPEs)12citations
  • 2021Ultrathin 2D-oxides: A perspective on fabrication, structure, defect, transport, electron, and phonon properties22citations
  • 2018Plastic Metal-Free Electric Motor by 3D Printing of Graphene-Polyamide Powder53citations

Places of action

Chart of shared publication
Arole, Kailash
1 / 4 shared
Sarmah, Anubhav
1 / 3 shared
Liu, Kai-Wei
1 / 1 shared
Cao, Huaixuan
1 / 2 shared
Tan, Zeyi
1 / 1 shared
Radha, Santosh Kumar
1 / 1 shared
Sehirlioglu, Alp
1 / 2 shared
Pachuta, Kevin
1 / 1 shared
Gao, Xuan
1 / 1 shared
Holler, Brian
1 / 1 shared
Berger, Marie-Hélène
1 / 30 shared
Lambrecht, Walter
1 / 1 shared
Volkova, Halyna
1 / 2 shared
Crowley, Kyle
1 / 3 shared
Bajamundi, Cyril
1 / 1 shared
Kwon, John G.
1 / 1 shared
De Leon, Al
1 / 1 shared
Alejandro, Espera Jr.
1 / 1 shared
Rodier, Bradley J.
1 / 1 shared
Wei, Peiran
1 / 1 shared
Advincula, Rigoberto C.
1 / 2 shared
Ilijasic, Fisher
1 / 1 shared
Williams, Jaylen
1 / 1 shared
Chart of publication period
2022
2021
2018

Co-Authors (by relevance)

  • Arole, Kailash
  • Sarmah, Anubhav
  • Liu, Kai-Wei
  • Cao, Huaixuan
  • Tan, Zeyi
  • Radha, Santosh Kumar
  • Sehirlioglu, Alp
  • Pachuta, Kevin
  • Gao, Xuan
  • Holler, Brian
  • Berger, Marie-Hélène
  • Lambrecht, Walter
  • Volkova, Halyna
  • Crowley, Kyle
  • Bajamundi, Cyril
  • Kwon, John G.
  • De Leon, Al
  • Alejandro, Espera Jr.
  • Rodier, Bradley J.
  • Wei, Peiran
  • Advincula, Rigoberto C.
  • Ilijasic, Fisher
  • Williams, Jaylen
OrganizationsLocationPeople

article

Electrically conductive porous Ti3C2Tx MXene-polymer composites from high internal phase emulsions (HIPEs)

  • Arole, Kailash
  • Sarmah, Anubhav
  • Liu, Kai-Wei
  • Cao, Huaixuan
  • Pentzer, Emily
  • Tan, Zeyi
Abstract

<jats:title>Abstract</jats:title><jats:p>Porous MXene-polymer composites have gained attention due to their low density, large surface area, and high electrical conductivity, which can be used in applications such as electromagnetic interference shielding, sensing, energy storage, and catalysis. High internal phase emulsions (HIPEs) can be used to template the synthesis of porous polymer structures, and when solid particles are used as the interfacial agent, composites with pores lined with the particles can be realized. Here, we report a simple and scalable method to prepare conductive porous MXene/polyacrylamide structures via polymerization of the continuous phase in oil/water HIPEs. The HIPEs are stabilized by salt flocculated Ti<jats:sub>3</jats:sub>C<jats:sub>2</jats:sub>T<jats:italic><jats:sub>x</jats:sub></jats:italic> nanosheets, without the use of a co-surfactant. After polymerization, the polyHIPE structure consists of porous polymer struts and pores lined with Ti<jats:sub>3</jats:sub>C<jats:sub>2</jats:sub>T<jats:italic><jats:sub>x</jats:sub></jats:italic> nanosheets, as confirmed by scanning electron microscopy, energy dispersive x-ray spectroscopy, and x-ray photoelectron spectroscopy. The pore size can be tuned by varying the Ti<jats:sub>3</jats:sub>C<jats:sub>2</jats:sub>T<jats:italic><jats:sub>x</jats:sub></jats:italic> concentration, and the interconnected Ti<jats:sub>3</jats:sub>C<jats:sub>2</jats:sub>T<jats:italic><jats:sub>x</jats:sub></jats:italic> network allows for electrical percolation at low Ti<jats:sub>3</jats:sub>C<jats:sub>2</jats:sub>T<jats:italic><jats:sub>x</jats:sub></jats:italic> loading; further, the electrical conductivity is stable for months indicating that in these composites, the nanosheets are stable to oxidation at ambient conditions. The polyHIPEs also exhibit rapid radio frequency heating at low power (10 °C s<jats:sup>−1</jats:sup> at 1 W). This work demonstrates a simple approach to accessing electrically conductive porous MXene/polymer composites with tunable pore morphology and good oxidation stability of the nanosheets.</jats:p>

Topics
  • porous
  • density
  • impedance spectroscopy
  • pore
  • surface
  • polymer
  • phase
  • scanning electron microscopy
  • x-ray photoelectron spectroscopy
  • composite
  • hot isostatic pressing
  • electrical conductivity
  • surfactant
  • X-ray spectroscopy