Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Apte, Amey

  • Google
  • 3
  • 29
  • 102

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (3/3 displayed)

  • 2022Low temperature CVD growth of WSe2 enabled by moisture-assisted defects in the precursor powder9citations
  • 2019Optical Control of Non-Equilibrium Phonon Dynamics.30citations
  • 2017Ultrafast non-radiative dynamics of atomically thin MoSe263citations

Places of action

Chart of shared publication
Vashishta, Priya
3 / 6 shared
Ajnsztajn, Alec
1 / 1 shared
Castro-Pardo, Samuel
1 / 1 shared
Susarla, Sandhya
1 / 2 shared
Sassi, Lucas
1 / 2 shared
Ajayan, Pulickel M.
1 / 29 shared
Hachtel, Jordan A.
1 / 4 shared
Tiwary, Chandra Sekhar
3 / 13 shared
Vajtai, Robert
1 / 16 shared
Yang, Jie
1 / 9 shared
Ajayan, Pulickel
2 / 9 shared
Zhang, Xiang
2 / 49 shared
Lin, Ming-Fu
2 / 5 shared
Kochat, Vidya
2 / 2 shared
Shen, Xiaozhe
2 / 6 shared
Weninger, Clemens
2 / 12 shared
Bergmann, Uwe
2 / 22 shared
Ma, Ruru
1 / 1 shared
Krishnamoorthy, Aravind
2 / 2 shared
Britz, Alexander
1 / 8 shared
Nakano, Aiichiro
2 / 5 shared
Shimojo, Fuyuki
2 / 4 shared
Li, Renkai
2 / 3 shared
Park, Suji
1 / 4 shared
Fritz, David
1 / 2 shared
Kalia, Rajiv
2 / 3 shared
Fritz, David M.
1 / 1 shared
Bassman, Lindsay
1 / 1 shared
Zheng, Qiang
1 / 1 shared
Chart of publication period
2022
2019
2017

Co-Authors (by relevance)

  • Vashishta, Priya
  • Ajnsztajn, Alec
  • Castro-Pardo, Samuel
  • Susarla, Sandhya
  • Sassi, Lucas
  • Ajayan, Pulickel M.
  • Hachtel, Jordan A.
  • Tiwary, Chandra Sekhar
  • Vajtai, Robert
  • Yang, Jie
  • Ajayan, Pulickel
  • Zhang, Xiang
  • Lin, Ming-Fu
  • Kochat, Vidya
  • Shen, Xiaozhe
  • Weninger, Clemens
  • Bergmann, Uwe
  • Ma, Ruru
  • Krishnamoorthy, Aravind
  • Britz, Alexander
  • Nakano, Aiichiro
  • Shimojo, Fuyuki
  • Li, Renkai
  • Park, Suji
  • Fritz, David
  • Kalia, Rajiv
  • Fritz, David M.
  • Bassman, Lindsay
  • Zheng, Qiang
OrganizationsLocationPeople

article

Low temperature CVD growth of WSe2 enabled by moisture-assisted defects in the precursor powder

  • Apte, Amey
  • Vashishta, Priya
  • Ajnsztajn, Alec
  • Castro-Pardo, Samuel
  • Susarla, Sandhya
  • Sassi, Lucas
  • Ajayan, Pulickel M.
  • Hachtel, Jordan A.
  • Tiwary, Chandra Sekhar
  • Vajtai, Robert
Abstract

<jats:title>Abstract</jats:title><jats:p>Two-dimensional transition metal dichalcogenides (TMDs) have been proposed for a wide variety of applications, such as neuromorphic computing, flexible field effect transistors, photonics, and solar cells, among others. However, for most of these applications to be feasible, it is necessary to integrate these materials with the current existing silicon technology. Although chemical vapor deposition is a promising method for the growth of high-quality and large-area TMD crystals, the high temperatures necessary for the growth make this technique incompatible with the processes used in the semiconductor industry. Herein, we demonstrate the possibility of low-temperature growth of TMDs, using tungsten selenide (WSe<jats:sub>2</jats:sub>) as a model, by simply using moisture-assisted defective tungsten oxide (WO<jats:sub>3</jats:sub>) precursor powders during the growth of these materials. Density functional theory calculations reveal the mechanism by which moisture promotes the defect formation on the precursor crystal structure and how it dictates the reduction of the temperature of the growth. The results were compared with the standard growth at high temperatures and with a precursor mixture with alkali salts to show the high quality of the WSe<jats:sub>2</jats:sub> grown at temperatures as low as 550 °C. To conclude, the work improves the understanding of nucleation and growth mechanisms of WSe<jats:sub>2</jats:sub> at low temperatures and provides a useful strategy for the growth of TMDs at temperatures required for the back-end-of-line compatibility with current silicon technology.</jats:p>

Topics
  • density
  • impedance spectroscopy
  • theory
  • semiconductor
  • Silicon
  • defect
  • density functional theory
  • two-dimensional
  • tungsten
  • chemical vapor deposition