Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Pakdel, Sahar

  • Google
  • 13
  • 48
  • 252

Technical University of Denmark

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (13/13 displayed)

  • 2023The electronic structure of intertwined kagome, honeycomb, and triangular sublattices of the intermetallics MCo$_2$Al$_9$citations
  • 2023The electronic structure of intertwined kagome, honeycomb, and triangular sublattices of the intermetallics MCo2Al9 (M = Sr, Ba)3citations
  • 2023The electronic structure of intertwined kagome, honeycomb, and triangular sublattices of the intermetallics MCo 2 Al 9 (M = Sr, Ba)3citations
  • 2023Electronic structure of intertwined kagome, honeycomb, and triangular sublattices of the intermetallics MCo2Al9 (M = Sr, Ba)3citations
  • 2023Electronic structure of intertwined kagome, honeycomb, and triangular sublattices of the intermetallics MCo2Al9 (M = Sr, Ba)3citations
  • 2023Electronic structure of intertwined kagome, honeycomb, and triangular sublattices of the intermetallics M Co 2 Al 9 ( M = Sr, Ba)3citations
  • 2023Exciton superfluidity in two-dimensional heterostructures from first principles1citations
  • 2023Exciton superfluidity in two-dimensional heterostructures from first principles:Importance of material-specific screening1citations
  • 2022Visualizing band structure hybridization and superlattice effects in twisted MoS 2 /WS 2 heterobilayers15citations
  • 2022Visualizing band structure hybridization and superlattice effects in twisted MoS<sub>2</sub>/WS<sub>2</sub> heterobilayers15citations
  • 2020Exciton diffusion in two-dimensional metal-halide perovskites163citations
  • 2019Laser-Beam-Patterned Topological Insulating States on Thin Semiconducting MoS231citations
  • 2018An implementation of spin–orbit coupling for band structure calculations with Gaussian basis sets: Two-dimensional topological crystals of Sb and Bi11citations

Places of action

Chart of shared publication
Polewczyk, Vincent
6 / 25 shared
Vobornik, Ivana
6 / 40 shared
Winiarski, Michał J.
6 / 6 shared
King, Phil D. C.
6 / 21 shared
Orgiani, Pasquale
6 / 34 shared
Mazzola, Federico
5 / 24 shared
Klimczuk, Tomasz
6 / 12 shared
Fujii, Jun
6 / 39 shared
Thygesen, Kristian Sommer
5 / 15 shared
Panaccione, Giancarlo
6 / 36 shared
Rossi, Giorgio
6 / 36 shared
Bigi, Chiara
6 / 38 shared
Mazzola, And Federico
1 / 1 shared
Thygesen, Ks
2 / 36 shared
Marholt, Rune Højlund
1 / 1 shared
Nilsson, Fredrik
2 / 4 shared
Grovn, Emil
2 / 2 shared
Thygesen, Kristian S.
1 / 6 shared
Højlund, Rune
1 / 1 shared
Taniguchi, Takashi
2 / 58 shared
Hofmann, Philip
2 / 39 shared
Muzzio, Ryan
2 / 2 shared
Bostwick, Aaron
2 / 10 shared
Lanata, Nicola
1 / 1 shared
Jozwiak, Chris
2 / 9 shared
Ulstrup, Soren
1 / 3 shared
Jonker, Berend T.
2 / 5 shared
Miwa, Jill A.
2 / 24 shared
Mccreary, Kathleen M.
2 / 4 shared
Jones, Alfred J. H.
2 / 4 shared
Curcio, Davide
2 / 6 shared
Singh, Simranjeet
1 / 4 shared
Watanabe, Kenji
1 / 49 shared
Biswas, Deepnarayan
2 / 9 shared
Koch, Roland J.
2 / 7 shared
Rotenberg, Eli
1 / 13 shared
Katoch, Jyoti
2 / 4 shared
Lanatà, Nicola
1 / 2 shared
Ulstrup, Søren
1 / 18 shared
Walraven, Sanne W.
1 / 1 shared
Prins, Ferry
1 / 3 shared
Prada, Elsa
1 / 5 shared
Magdaleno, Alvaro J.
1 / 2 shared
Delgado-Buscalioni, Rafael
1 / 1 shared
Meléndez, Marc
1 / 1 shared
Seitz, Michael
1 / 10 shared
Alcázar-Cano, Nerea
1 / 1 shared
Lubbers, Tim J.
1 / 1 shared
Chart of publication period
2023
2022
2020
2019
2018

Co-Authors (by relevance)

  • Polewczyk, Vincent
  • Vobornik, Ivana
  • Winiarski, Michał J.
  • King, Phil D. C.
  • Orgiani, Pasquale
  • Mazzola, Federico
  • Klimczuk, Tomasz
  • Fujii, Jun
  • Thygesen, Kristian Sommer
  • Panaccione, Giancarlo
  • Rossi, Giorgio
  • Bigi, Chiara
  • Mazzola, And Federico
  • Thygesen, Ks
  • Marholt, Rune Højlund
  • Nilsson, Fredrik
  • Grovn, Emil
  • Thygesen, Kristian S.
  • Højlund, Rune
  • Taniguchi, Takashi
  • Hofmann, Philip
  • Muzzio, Ryan
  • Bostwick, Aaron
  • Lanata, Nicola
  • Jozwiak, Chris
  • Ulstrup, Soren
  • Jonker, Berend T.
  • Miwa, Jill A.
  • Mccreary, Kathleen M.
  • Jones, Alfred J. H.
  • Curcio, Davide
  • Singh, Simranjeet
  • Watanabe, Kenji
  • Biswas, Deepnarayan
  • Koch, Roland J.
  • Rotenberg, Eli
  • Katoch, Jyoti
  • Lanatà, Nicola
  • Ulstrup, Søren
  • Walraven, Sanne W.
  • Prins, Ferry
  • Prada, Elsa
  • Magdaleno, Alvaro J.
  • Delgado-Buscalioni, Rafael
  • Meléndez, Marc
  • Seitz, Michael
  • Alcázar-Cano, Nerea
  • Lubbers, Tim J.
OrganizationsLocationPeople

article

Visualizing band structure hybridization and superlattice effects in twisted MoS<sub>2</sub>/WS<sub>2</sub> heterobilayers

  • Taniguchi, Takashi
  • Hofmann, Philip
  • Muzzio, Ryan
  • Bostwick, Aaron
  • Lanatà, Nicola
  • Jozwiak, Chris
  • Jonker, Berend T.
  • Ulstrup, Søren
  • Miwa, Jill A.
  • Mccreary, Kathleen M.
  • Jones, Alfred J. H.
  • Curcio, Davide
  • Pakdel, Sahar
  • Biswas, Deepnarayan
  • Koch, Roland J.
  • Katoch, Jyoti
Abstract

<jats:title>Abstract</jats:title><jats:p>A mismatch of atomic registries between single-layer transition metal dichalcogenides (TMDs) in a two-dimensional (2D) van der Waals heterostructure produces a moiré superlattice with a periodic potential, which can be fine-tuned by introducing a twist angle between the materials. This approach is promising both for controlling the interactions between the TMDs and for engineering their electronic band structures, yet direct observation of the changes to the electronic structure introduced with varying twist angle has so far been missing. Here, we probe heterobilayers comprised of single-layer MoS<jats:sub>2</jats:sub> and WS<jats:sub>2</jats:sub> with twist angles ranging from 2<jats:sup>∘</jats:sup> to 20<jats:sup>∘</jats:sup> and determine the twist angle-dependent evolution of the electronic band structure using micro-focused angle-resolved photoemission spectroscopy. We find strong interlayer hybridization between MoS<jats:sub>2</jats:sub> and WS<jats:sub>2</jats:sub> electronic states at the <jats:inline-formula><jats:tex-math><?CDATA ?></jats:tex-math><mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" overflow="scroll"><mml:mover><mml:mi mathvariant="normal">Γ</mml:mi><mml:mo>ˉ</mml:mo></mml:mover></mml:math><jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="tdmac3febieqn1.gif" xlink:type="simple" /></jats:inline-formula>-point of the Brillouin zone, leading to a shift of the valence band maximum in the heterostructure. Replicas of the hybridized states are observed at the center of twist angle-dependent moiré mini Brillouin zones. We confirm that these replica features arise from the inherent moiré potential by comparing our experimental observations with density functional theory calculations of the superlattice dispersion. Our direct visualization of these features underscores the potential of using twisted heterobilayer semiconductors to engineer hybrid electronic states and superlattices that alter the electronic and optical properties of 2D heterostructures for a wide range of twist angles.</jats:p>

Topics
  • density
  • impedance spectroscopy
  • dispersion
  • theory
  • semiconductor
  • density functional theory
  • two-dimensional
  • band structure