Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Kim, Dong Jin

  • Google
  • 1
  • 8
  • 6

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (1/1 displayed)

  • 2020Confocal laser scanning microscopy as a real-time quality-assessment tool for industrial graphene synthesis6citations

Places of action

Chart of shared publication
Hong, Byung Hee
1 / 2 shared
Moon, Joonhee
1 / 2 shared
Suh, Yeonjoon
1 / 1 shared
Park, Mina
1 / 1 shared
Jeong, Heejeong
1 / 1 shared
Lee, Chang-Won
1 / 1 shared
Jo, Insu
1 / 1 shared
Woo, Yunsung
1 / 1 shared
Chart of publication period
2020

Co-Authors (by relevance)

  • Hong, Byung Hee
  • Moon, Joonhee
  • Suh, Yeonjoon
  • Park, Mina
  • Jeong, Heejeong
  • Lee, Chang-Won
  • Jo, Insu
  • Woo, Yunsung
OrganizationsLocationPeople

article

Confocal laser scanning microscopy as a real-time quality-assessment tool for industrial graphene synthesis

  • Hong, Byung Hee
  • Moon, Joonhee
  • Suh, Yeonjoon
  • Kim, Dong Jin
  • Park, Mina
  • Jeong, Heejeong
  • Lee, Chang-Won
  • Jo, Insu
  • Woo, Yunsung
Abstract

<jats:title>Abstract</jats:title><jats:p>For the industrial quality control (QC) of the chemical vapor deposition (CVD) graphene, it is essential to develop a method to screen out unsatisfactory graphene films as efficiently as possible. However, previously proposed methods based on Raman spectroscopy or optical imaging after chemical etching are unable to provide non-invasive and fast analysis of large-area graphene films as grown on Cu foil substrates. Here we report that the reflection mode of confocal laser scanning microscopy (CLSM) provides a high-contrast image of graphene on Cu, enabling the real-time evaluation of the coverage and quality of graphene. The reflectance contrast, <jats:italic>Rc</jats:italic>, was found to be dependent on the incident laser wavelength, of which the maximum was obtained at 405 nm. In addition, <jats:italic>Rc</jats:italic> decreases with increasing defect density of graphene. The dependence of <jats:italic>Rc</jats:italic> on the graphene’s quality and laser wavelengths were explained by the tight-binding model calculation based on the Fresnel’s interference formula. Thus, we believe that the reflection mode CLSM would be a very powerful quality-assessment tool for the mass production of CVD graphene films grown on Cu.</jats:p>

Topics
  • density
  • impedance spectroscopy
  • etching
  • defect
  • Raman spectroscopy
  • chemical vapor deposition
  • confocal laser scanning microscopy