People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Popov, Georgi
University of Helsinki
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (17/17 displayed)
- 2024Atomic Layer Deposition of Molybdenum Carbide Thin Filmscitations
- 2024Atomic Layer Deposition of Molybdenum Carbide Thin Filmscitations
- 2024Area-Selective Etching of Poly(methyl methacrylate) Films by Catalytic Decompositioncitations
- 2023Area-Selective Etching of Poly(methyl methacrylate) Films by Catalytic Decompositioncitations
- 2023Conversion of ALD CuO Thin Films into Transparent Conductive p-Type CuI Thin Filmscitations
- 2023Atomic Layer Deposition and Pulsed Chemical Vapor Deposition of SnI2 and CsSnI3citations
- 2023Atomic Layer Deposition and Pulsed Chemical Vapor Deposition of SnI2 and CsSnI3citations
- 2022Atomic layer deposition of PbCl2, PbBr2 and mixed lead halide (Cl, Br, I) PbXnY2-n thin filmscitations
- 2022Atomic Layer Deposition of CsI and CsPbI3citations
- 2021Oxidative MLD of Conductive PEDOT Thin Films with EDOT and ReCl5 as Precursorscitations
- 2021Oxidative MLD of Conductive PEDOT Thin Films with EDOT and ReCl5 as Precursorscitations
- 2020Atomic Layer Deposition of PbS Thin Films at Low Temperaturescitations
- 2020Van der Waals epitaxy of continuous thin films of 2D materials using atomic layer deposition in low temperature and low vacuum conditionscitations
- 2019Atomic Layer Deposition of Photoconductive Cu2O Thin Filmscitations
- 2019Atomic Layer Deposition of PbI₂ Thin Filmscitations
- 2019Atomic Layer Deposition of Emerging 2D Semiconductors, HfS2 and ZrS2, for Optoelectronicscitations
- 2016Scalable Route to the Fabrication of CH3NH3PbI3 Perovskite Thin Films by Electrodeposition and Vapor Conversion.citations
Places of action
Organizations | Location | People |
---|
article
Van der Waals epitaxy of continuous thin films of 2D materials using atomic layer deposition in low temperature and low vacuum conditions
Abstract
Van der Waals epitaxy holds great promise in producing high-quality films of 2D materials. However, scalable van der Waals epitaxy processes operating at low temperatures and low vacuum conditions are lacking. Herein, atomic layer deposition is used for van der Waals epitaxy of continuous multilayer films of 2D materials HfS2, MoS2, SnS2, and ZrS2 on muscovite mica and PbI2 on sapphire at temperatures between 75 degrees C and 400 degrees C. For the metal sulfides on mica, the main epitaxial relation is MS2 mica. Some domains rotated by 30 degrees are also observed corresponding to the MS2 mica alignment. In both cases, the presence of domains rotated by 60 degrees (mirror twins) is also expected. For PbI2 on sapphire, the epitaxial relation is PbI2 Al2O3 with no evidence of 30 degrees domains. For all of the studied systems there is relatively large in-plane mosaicity and in the PbI2/Al2O3 system some non-epitaxial domains are also observed. The study presents first steps of an approach towards a scalable and semiconductor industry compatible van der Waals epitaxy method. ; Peer reviewed