Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Deilmann, Thorsten

  • Google
  • 1
  • 1
  • 104

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (1/1 displayed)

  • 2019Finite-momentum exciton landscape in mono- and bilayer transition metal dichalcogenides104citations

Places of action

Chart of shared publication
Thygesen, Ks
1 / 36 shared
Chart of publication period
2019

Co-Authors (by relevance)

  • Thygesen, Ks
OrganizationsLocationPeople

article

Finite-momentum exciton landscape in mono- and bilayer transition metal dichalcogenides

  • Thygesen, Ks
  • Deilmann, Thorsten
Abstract

Monolayers and bilayers of transition metal dichalcogenides (TMDCs) are currently being intensively scrutinized not least due to their rich opto-electronic properties which are governed by strongly bound excitons. Until now the main focus has been on excitons with zero momentum. In this study we employ ab initio many-body perturbation theory within the GW/BSE approximation to describe the entire Q-resolved exciton band structure for mono- and bilayers of the MX<sub>2</sub> (M = Mo, W and X = Se, S) TMDCs. We find that the strong excitonic effects, i.e. strong electron-hole interactions, are present throughout the entire Q-space. While the exciton binding energies of the lowest excitons do not vary significantly with Q, we find a strong variation in their coupling strength. In particular, the latter are strongly peaked for excitons at Q = 0 and Q = Λ. For MoX<sub>2</sub> monolayers the K → K' excitons constitutes the exciton ground state, while in WX<sub>2</sub> monolayers direct transitions at K are lowest in energy. Our calculations further show that the exciton landscape is highly sensitive to strain and interlayer hybridization. For all four bilayers the exciton ground state is shifted to Γ → Λ or K → Λ transitions closely following the trends of the single-particle band structures.

Topics
  • impedance spectroscopy
  • theory
  • strength
  • band structure