People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Falko, Vladimir I.
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (26/26 displayed)
- 2024Ultimate charge transport regimes in doping-controlled graphene laminates: phonon-assisted processes revealed by the linear magnetoresistancecitations
- 2024Ultimate Charge Transport Regimes in Doping-Controlled Graphene Laminates: Phonon-Assisted Processes Revealed by the Linear Magnetoresistance.
- 2024Two-dimensional electrons at mirror and twistronic twin boundaries in van der Waals ferroelectricscitations
- 2021Excited Rydberg States in MoSe2/WSe2 Heterostructurescitations
- 2019Data for Indirect to direct gap crossover in two-dimensional InSe revealed by angle resolved photoemission spectroscopy
- 2019Formation and healing of defects in atomically thin GaSe and InSecitations
- 2019Indirect to direct gap crossover in two-dimensional InSe revealed by angle-resolved photoemission spectroscopycitations
- 2018Infrared-to-violet tunable optical activity in atomic films of GaSe, InSe, and their heterostructurescitations
- 2018Geometrically Enhanced Thermoelectric Effects in Graphene Nanoconstrictionscitations
- 2017Magnetoresistance of vertical Co-graphene-NiFe junctions controlled by charge transfer and proximity-induced spin splitting in graphenecitations
- 2016High electron mobility, quantum Hall effect and anomalous optical response in atomically thin InSecitations
- 2016High electron mobility, quantum Hall effect and anomalous optical response in atomically thin InSecitations
- 2016The direct-to-indirect band gap crossover in two-dimensional van der Waals Indium Selenide crystalscitations
- 2016Auger recombination of dark excitons in WS2 and WSe2 monolayerscitations
- 2015k · p theory for two-dimensional transition metal dichalcogenide semiconductorscitations
- 2015Nanometre scale 3D nanomechanical imaging of semiconductor structures from few nm to sub-micrometre depthscitations
- 2014Graphitic platform for self-catalysed InAs nanowires growth by molecular beam epitaxycitations
- 2014Electrons and phonons in single layers of hexagonal indium chalcogenides from ab initio calculationscitations
- 2008Spin-orbit-assisted electron-phonon interaction and the magnetophonon resonance in semiconductor quantum wellscitations
- 2008Nuclear spin bi-stability in semiconductor quantum dots
- 2007Bistability of optically induced nuclear spin orientation in quantum dotscitations
- 2007The low energy electronic band structure of bilayer graphene.citations
- 2004A tunnel junction between a ferromagnet and a normal metal:Magnon-assisted contribution to thermopower and conductancecitations
- 2004A tunnel junction between a ferromagnet and a normal metal: magnon-assisted contribution to thermopower and conductancecitations
- 2003Magnon-assisted transport and thermopower in ferromagnet-normal-metal tunnel junctionscitations
- 2003Andreev reflection and subgap transport due to electron-magnon interactions in ferromagnet-superconductor junctions.citations
Places of action
Organizations | Location | People |
---|
article
Magnetoresistance of vertical Co-graphene-NiFe junctions controlled by charge transfer and proximity-induced spin splitting in graphene
Abstract
Graphene is hailed as an ideal material for spintronics due to weak intrinsic spin-orbit interaction that facilitates lateral spin transport and tunability of its electronic properties, including a possibility to induce magnetism in graphene. Another promising application of graphene is related to its use as a spacer separating ferromagnetic metals (FMs) in vertical magnetoresistive devices, the most prominent class of spintronic devices widely used as magnetic sensors. In particular, few-layer graphene was predicted to act as a perfect spin filter. Here we show that the role of graphene in such devices (at least in the absence of epitaxial alignment between graphene and the FMs) is determined by proximity-induced spin splitting and charge transfer with adjacent ferromagnetic metals, making graphene a weak FM electrode rather than a spin filter. To this end, we report observations of magnetoresistance (MR) in vertical Co-graphene-NiFe junctions with 1 to 4 graphene layers separating the ferromagnets, and demonstrate that the dependence of the MR sign on the number of layers and its inversion at relatively small bias voltages is consistent with spin transport between weakly doped and differently spin-polarized layers of graphene. The proposed interpretation is supported by the observation of an MR sign reversal in biased Co-graphene-hBN-NiFe devices and by comprehensive structural characterization. Our results suggest a new architecture for vertical devices with electrically controlled MR.