Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Avinash, S.

  • Google
  • 2
  • 5
  • 2

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (2/2 displayed)

  • 2024Effect of laser shock peening as a pretreatment on ion nitriding of precipitation hardened stainless steel2citations
  • 2022Effect of fiber orientation on the mechanical properties of unidirectional basalt fiber reinforced polymer matrix compositescitations

Places of action

Chart of shared publication
Duraiselvam, Muthukannan
1 / 5 shared
Shivashankara, B. S.
1 / 2 shared
Pradeep, N. B.
1 / 2 shared
Rao, R. Raghavendra
1 / 2 shared
Pradeep, S.
1 / 3 shared
Chart of publication period
2024
2022

Co-Authors (by relevance)

  • Duraiselvam, Muthukannan
  • Shivashankara, B. S.
  • Pradeep, N. B.
  • Rao, R. Raghavendra
  • Pradeep, S.
OrganizationsLocationPeople

article

Effect of laser shock peening as a pretreatment on ion nitriding of precipitation hardened stainless steel

  • Avinash, S.
  • Duraiselvam, Muthukannan
Abstract

<jats:title>Abstract</jats:title><jats:p>Laser shock peening (LSP) is emerging as an advanced technology to improve the fatigue life of engineering products. Also, this can improve wear and corrosion resistance as add-on benefits to the properties of the materials. In the present investigation, a systematic understanding of the hybrid surface treatment that combines LSP with ion nitriding, also known as plasma nitriding (PN) of precipitated hardened (PH) stainless steel was conducted to improve the effective case hardening layer. The effect of input parameters such as laser spot diameter, the number of superimposed layers, and overlap rate was investigated on the performance characteristics, which include surface morphology, microhardness, and the change in microstructure after the proposed treatment. The surface characterization results reveal that an 80% laser overlap rate modified the surface roughness of PN samples owing to higher surface roughness values induced by ablation during the LSP treatment. The microhardness and optical microscopy (OM) results revealed an increase in the effective hardening layer thickness of about 115% for a 40% overlap rate owing to the absence of blind spots. In addition, XRD analysis revealed the presence of Fe<jats:sub>4</jats:sub>N and CrN compounds on the surface of the PN samples. Scanning electron microscopy (SEM) with energy dispersive spectroscopy (EDS) elemental mapping reveals the presence of a nitrogen-rich phase in the effective hardened layer and increased effective hardened layer thickness owing to grain refinement of LSP pre-processing.</jats:p>

Topics
  • impedance spectroscopy
  • morphology
  • surface
  • compound
  • grain
  • stainless steel
  • corrosion
  • phase
  • scanning electron microscopy
  • x-ray diffraction
  • Nitrogen
  • fatigue
  • precipitation
  • Energy-dispersive X-ray spectroscopy
  • optical microscopy