Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Ababsa, Asma

  • Google
  • 1
  • 4
  • 16

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (1/1 displayed)

  • 2022Effect of sodium dodecyl sulfate and different SiC quantities on electrodeposited Ni-Co alloy coatings16citations

Places of action

Chart of shared publication
Temam, Hachemi Ben
1 / 4 shared
Malfi, And Najran
1 / 1 shared
Hasan, Gamil Gamal
1 / 7 shared
Althamthami, Mohammed
1 / 5 shared
Chart of publication period
2022

Co-Authors (by relevance)

  • Temam, Hachemi Ben
  • Malfi, And Najran
  • Hasan, Gamil Gamal
  • Althamthami, Mohammed
OrganizationsLocationPeople

article

Effect of sodium dodecyl sulfate and different SiC quantities on electrodeposited Ni-Co alloy coatings

  • Temam, Hachemi Ben
  • Malfi, And Najran
  • Hasan, Gamil Gamal
  • Ababsa, Asma
  • Althamthami, Mohammed
Abstract

<jats:title>Abstract</jats:title><jats:p>Ni-Co nanocomposites Prepared by electrodeposition in a modified Watts bath containing various quantities of silicon carbide SiC and the organic additive sodium dodecyl sulfate SDS as a surfactant. The influence of nanoparticle incorporation on the electrodeposit microstructure, mechanical characteristics, and deformation process was studied. Vickers micro-hardness and weight loss tests were used to study the mechanical properties and morphology. The microstructure has also been analyzed by scanning electron microscopy (SEM) and X-ray diffraction (XRD). Co-deposition of uniformly dispersed SiC particles, on the other hand, was found to improve the extreme tensile strength of the deposits significantly; SDS lowered the surface tension, allowing the SiC particles to fill in all remaining gaps to achieve a homogeneous surface. A process involving atoms that can dramatically improve flexibility. The incorporation of SiC particles and raising the strain rate encouraged a ductile fracture mode in a nano-crystalline Ni-Co matrix, which demonstrated a mixed mod behavior of flexible and brittle fracture; it was evident that the addition of SDS increases the concentration of SiC particles in general on Ni-Co samples. Moreover, compare Ni-Co with various amounts of SiC and Ni-Co/SiC with adding SDS. Furthermore, to achieve the highest possible electroplating efficiency.</jats:p>

Topics
  • nanoparticle
  • nanocomposite
  • microstructure
  • surface
  • scanning electron microscopy
  • x-ray diffraction
  • strength
  • carbide
  • Sodium
  • hardness
  • Silicon
  • tensile strength
  • electrodeposition
  • surfactant