Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Ginis, Vincent

  • Google
  • 5
  • 31
  • 82

Vrije Universiteit Brussel

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (5/5 displayed)

  • 2018Roadmap on transformation optics80citations
  • 2016Transformation optics approach for Goos-Hänchen shift enhancement at metamaterial interfaces2citations
  • 2014Metamaterials enchancing optical forcescitations
  • 2012Optical pulse frequency conversion inside transformation-optical metamaterialscitations
  • 2011Metamaterials Transforming the Frequency of Optical Pulsescitations

Places of action

Chart of shared publication
Tassin, Philippe
5 / 5 shared
Lambrechts, Lieve
1 / 1 shared
Danckaert, Jan
3 / 4 shared
Veretennicoff, Irina
3 / 4 shared
Soukoulis, C. M.
1 / 2 shared
Craps, Ben
2 / 2 shared
Chart of publication period
2018
2016
2014
2012
2011

Co-Authors (by relevance)

  • Tassin, Philippe
  • Lambrechts, Lieve
  • Danckaert, Jan
  • Veretennicoff, Irina
  • Soukoulis, C. M.
  • Craps, Ben
OrganizationsLocationPeople

article

Roadmap on transformation optics

  • Gratus, Jonathan
  • Leonhardt, Ulf
  • Li, Jensen
  • Smolyaninov, Igor I.
  • Wegener, Martin
  • Kinsler, Paul
  • Zhu, Jian
  • Kadic, Muamer
  • Mitchell-Thomas, Rhiannon C.
  • Smolyaninova, Vera N.
  • Lukens, Joseph M.
  • Ginis, Vincent
  • Lai, Yun
  • Minatti, Gabriele
  • Tassin, Philippe
  • Cummer, Steven A.
  • Pendry, John B.
  • Ebrahimpouri, Mahsa
  • Maci, Stefano
  • Mccall, Martin
  • Horsley, S. A. R.
  • Martini, Enrica
  • Quevedo-Teruel, Oscar
  • Weiner, Andrew M.
  • Thompson, Robert T.
  • Hao, Yang
  • Galdi, Vincenzo
Abstract

<p>Transformation optics asks, using Maxwell's equations, what kind of electromagnetic medium recreates some smooth deformation of space? The guiding principle is Einstein's principle of covariance: that any physical theory must take the same form in any coordinate system. This requirement fixes very precisely the required electromagnetic medium. The impact of this insight cannot be overestimated. Many practitioners were used to thinking that only a few analytic solutions to Maxwell's equations existed, such as the monochromatic plane wave in a homogeneous, isotropic medium. At a stroke, transformation optics increases that landscape from 'few' to 'infinity', and to each of the infinitude of analytic solutions dreamt up by the researcher, there corresponds an electromagnetic medium capable of reproducing that solution precisely. The most striking example is the electromagnetic cloak, thought to be an unreachable dream of science fiction writers, but realised in the laboratory a few months after the papers proposing the possibility were published. But the practical challenges are considerable, requiring meta-media that are at once electrically and magnetically inhomogeneous and anisotropic. How far have we come since the first demonstrations over a decade ago? And what does the future hold? If the wizardry of perfect macroscopic optical invisibility still eludes us in practice, then what compromises still enable us to create interesting, useful, devices? While three-dimensional (3D) cloaking remains a significant technical challenge, much progress has been made in two dimensions. Carpet cloaking, wherein an object is hidden under a surface that appears optically flat, relaxes the constraints of extreme electromagnetic parameters. Surface wave cloaking guides sub-wavelength surface waves, making uneven surfaces appear flat. Two dimensions is also the setting in which conformal and complex coordinate transformations are realisable, and the possibilities in this restricted domain do not appear to have been exhausted yet. Beyond cloaking, the enhanced electromagnetic landscape provided by transformation optics has shown how fully analytic solutions can be found to a number of physical scenarios such as plasmonic systems used in electron energy loss spectroscopy and cathodoluminescence. Are there further fields to be enriched? A new twist to transformation optics was the extension to the spacetime domain. By applying transformations to spacetime, rather than just space, it was shown that events rather than objects could be hidden from view; transformation optics had provided a means of effectively redacting events from history. The hype quickly settled into serious nonlinear optical experiments that demonstrated the soundness of the idea, and it is now possible to consider the practical implications, particularly in optical signal processing, of having an 'interrupt-without-interrupt' facility that the so-called temporal cloak provides. Inevitable issues of dispersion in actual systems have only begun to be addressed. Now that time is included in the programme of transformation optics, it is natural to ask what role ideas from general relativity can play in shaping the future of transformation optics. Indeed, one of the earliest papers on transformation optics was provocatively titled 'General Relativity in Electrical Engineering'. The answer that curvature does not enter directly into transformation optics merely encourages us to speculate on the role of transformation optics in defining laboratory analogues. Quite why Maxwell's theory defines a 'perfect' transformation theory, while other areas of physics such as acoustics are not apparently quite so amenable, is a deep question whose precise, mathematical answer will help inform us of the extent to which similar ideas can be extended to other fields. The contributors to this Roadmap, who are all renowned practitioners or inventors of transformation optics, will give their perspectives into the field's status and future development.</p>

Topics
  • impedance spectroscopy
  • dispersion
  • surface
  • theory
  • experiment
  • anisotropic
  • isotropic
  • electron energy loss spectroscopy