People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Malda, Jos
Utrecht University
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (39/39 displayed)
- 2024Covalent Grafting of Functionalized MEW Fibers to Silk Fibroin Hydrogels to Obtain Reinforced Tissue Engineered Constructscitations
- 2024Covalent Grafting of Functionalized MEW Fibers to Silk Fibroin Hydrogels to Obtain Reinforced Tissue Engineered Constructscitations
- 20243D Printed Magneto-Active Microfiber Scaffolds for Remote Stimulation and Guided Organization of 3D In Vitro Skeletal Muscle Modelscitations
- 20233D printed magneto-active microfiber scaffolds for remote stimulation of 3D in vitro skeletal muscle modelscitations
- 20233D Printed Magneto‐Active Microfiber Scaffolds for Remote Stimulation and Guided Organization of 3D In Vitro Skeletal Muscle Modelscitations
- 20233D printed and punched porous surfaces of a non-resorbable, biphasic implant for the repair of osteochondral lesions improves repair tissue adherence and ingrowth
- 2023Composite Graded Melt Electrowritten Scaffolds for Regeneration of the Periodontal Ligament-to-Bone Interfacecitations
- 2021The Complexity of Joint Regeneration: How an Advanced Implant could Fail by Its In Vivo Proven Bone Componentcitations
- 2020Rapid and cytocompatible cell-laden silk hydrogel formation via riboflavin-mediated crosslinking
- 2020Rapid and cytocompatible cell-laden silk hydrogel formation via riboflavin-mediated crosslinkingcitations
- 2020Anisotropic hygro-expansion in hydrogel fibers owing to uniting 3D electrowriting and supramolecular polymer assemblycitations
- 2020A Multifunctional Nanocomposite Hydrogel for Endoscopic Tracking and Manipulationcitations
- 2020A composite hydrogel-3D printed thermoplast osteochondral anchor as an example for a zonal approach to cartilage repair: in vivo performance in a long-term equine modelcitations
- 2020Combining multi-scale 3D printing technologies to engineer reinforced hydrogel-ceramic interfacescitations
- 2020Combining multi-scale 3D printing technologies to engineer reinforced hydrogel-ceramic interfacescitations
- 2020Long-Term in Vivo Performance of Low-Temperature 3D-Printed Bioceramics in an Equine Modelcitations
- 2020Stable and Antibacterial Magnesium-Graphene Nanocomposite-Based Implants for Bone Repaircitations
- 2020Stable and Antibacterial Magnesium-Graphene Nanocomposite-Based Implants for Bone Repaircitations
- 2020Using 3D-printing to fabricate a microfluidic vascular model to mimic arterial thrombosis
- 2020Orthotopic Bone Regeneration within 3D Printed Bioceramic Scaffolds with Region-Dependent Porosity Gradients in an Equine Modelcitations
- 2020Orthotopic Bone Regeneration within 3D Printed Bioceramic Scaffolds with Region-Dependent Porosity Gradients in an Equine Model
- 2019T2* and quantitative susceptibility mapping in an equine model of post-traumatic osteoarthritis: assessment of mechanical and structural properties of articular cartilage
- 2019Bi-layered micro-fibre reinforced hydrogels for articular cartilage regeneration
- 2019Bi-layered micro-fibre reinforced hydrogels for articular cartilage regenerationcitations
- 2019Arthroscopic determination of cartilage proteoglycan content and collagen network structure with near-infrared spectroscopycitations
- 2019A Stimuli-Responsive Nanocomposite for 3D Anisotropic Cell-Guidance and Magnetic Soft Roboticscitations
- 2019Volumetric Bioprinting of Complex Living-Tissue Constructs within Secondscitations
- 2018Out-of-plane 3D-printed microfibers improve the shear properties of hydrogel composites
- 2018Out-of-plane 3D-printed microfibers improve the shear properties of hydrogel compositescitations
- 2018Out-of-Plane 3D-Printed Microfibers Improve the Shear Properties of Hydrogel Compositescitations
- 2017Assessing bioink shape fidelity to aid material development in 3D bioprintingcitations
- 2017Triblock copolymers based on ε-caprolactone and trimethylene carbonate for the 3D printing of tissue engineering scaffoldscitations
- 2017Triblock copolymers based on epsilon-caprolactone and trimethylene carbonate for the 3D printing of tissue engineering scaffoldscitations
- 2017Mimicking arterial thrombosis in a 3D-printed microfluidic in vitro vascular model based on computed tomography angiography datacitations
- 2016A thermo-responsive and photo-polymerizable chondroitin sulfate-based hydrogel for 3D printing applicationscitations
- 2016Yield stress determines bioprintability of hydrogels based on gelatin-methacryloyl and gellan gum for cartilage bioprintingcitations
- 2014Development and characterisation of a new bioink for additive tissue manufacturingcitations
- 2014Covalent attachment of a three-dimensionally printed thermoplast to a gelatin hydrogel for mechanically enhanced cartilage constructscitations
- 2014Covalent attachment of a three-dimensionally printed thermoplast to a gelatin hydrogel for mechanically enhanced cartilage constructs
Places of action
Organizations | Location | People |
---|
article
A composite hydrogel-3D printed thermoplast osteochondral anchor as an example for a zonal approach to cartilage repair: in vivo performance in a long-term equine model
Abstract
<p>Recent research has been focusing on the generation of living personalized osteochondral constructs for joint repair. Native articular cartilage has a zonal structure, which is not reflected in current constructs and which may be a cause of the frequent failure of these repair attempts. Therefore, we investigated the performance of a composite implant that further reflects the zonal distribution of cellular component both in vitro and in vivo in a long-term equine model. Constructs constituted of a 3D-printed poly(-caprolactone) (PCL) bone anchor from which reinforcing fibers protruded into the chondral part of the construct over which two layers of a thiol-ene cross-linkable hyaluronic acid/poly(glycidol) hybrid hydrogel (HA-SH / P(AGE-co-G)) were fabricated. The top layer contained Articular Cartilage Progenitor Cells (ACPCs) derived from the superficial layer of native cartilage tissue, the bottom layer contained mesenchymal stromal cells (MSCs). The chondral part of control constructs were homogeneously filled with MSCs. After six months in vivo, microtomography revealed significant bone growth into the anchor. Histologically, there was only limited production of cartilage-like tissue (despite persistency of hydrogel) both in zonal and non-zonal constructs. There were no differences in histological scoring; however, the repair tissue was significantly stiffer in defects repaired with zonal constructs. The sub-optimal quality of the repair tissue may be related to several factors, including early loss of implanted cells, or inappropriate degradation rate of the hydrogel. Nonetheless, this approach may be promising and research into further tailoring of biomaterials and of construct characteristics seems warranted.</p>