Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Gadallah, N.

  • Google
  • 2
  • 3
  • 18

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (2/2 displayed)

  • 2022Implementation of hybrid RSM-GA optimization techniques in underwater friction stir welding6citations
  • 2020Optimization of friction stir welding parameters using response surface methodology12citations

Places of action

Chart of shared publication
El-Zathry, N. E.
1 / 2 shared
Ghafaar, M. Abdel
1 / 2 shared
Abu-Okail, M.
1 / 2 shared
Chart of publication period
2022
2020

Co-Authors (by relevance)

  • El-Zathry, N. E.
  • Ghafaar, M. Abdel
  • Abu-Okail, M.
OrganizationsLocationPeople

article

Optimization of friction stir welding parameters using response surface methodology

  • Gadallah, N.
  • Abu-Okail, M.
Abstract

<jats:title>Abstract</jats:title><jats:p>The aim of this article is to create a new technique for predicting discontinuity formation, its place and magnitude during aluminium alloy (AA6061) friction stir welding (FSW). The effectiveness of the technique was demonstrated using visual inspection, hardness and tensile test of the friction stir welded joints. The measured current was analysed through power calculations. In each of the FSW stages, the energy consumption is significantly varied, clearly distinguishing the penetration of the tool, its revolution, its traverse movement and its metal removal rate. The findings of tracking the energy consumption indicate that using power consumption means the significance of weld quality. FSW has been carried out based on two factors - two levels. Response surface methodology (RSM) is employed to develop a mathematical model. Analysis of variance (ANOVA) technique checks the adequacy of the developed mathematical model, which is used effectively at 95% confidence level. In contrast, tensile and hardness tests also showed that welds at high power usage failed continuously within the welding area, due to reduced welding temperature and absence of penetration in the welding zone.</jats:p>

Topics
  • impedance spectroscopy
  • surface
  • aluminium
  • aluminium alloy
  • hardness