Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Rosemann, Paul

  • Google
  • 27
  • 37
  • 188

Leipzig University of Applied Sciences

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (27/27 displayed)

  • 2022Microstructure‐dependent crevice corrosion damage of implant materials <scp>CoCr28Mo6</scp>, <scp>TiAl6V4</scp> and <scp>REX</scp> 734 under severe inflammatory conditions10citations
  • 2022Material-property correlations for a high-alloy special steel1citations
  • 2021Application limits and sensitisation behaviour of the manganese‐ and nitrogen‐alloyed austenitic stainless steel P2000 (X13CrMnMoN18‐14‐3)7citations
  • 2020Sensitization behaviour of the nitrogen alloyed austenitic stainless steel X8CrMnMoN18-19-22citations
  • 2020Microstructure and surface investigations of TiAl6V4 and CoCr28Mo6 orthopaedic femoral stems3citations
  • 2020Quantitative evaluation of global and local chromium contents with the EPR test on ferritic and martensitic stainless steels3citations
  • 2020Improvement of the martensitic stainless steel X46Cr13 by Q&P heat treatment7citations
  • 2020KorroPad testing - applications from industry and research3citations
  • 2019Detection of sensitisation on aged lean duplex stainless steel with different electrochemical methods23citations
  • 2019Correlative Microscopy – Color Etching vs. Electron Backscatter Diffraction: Application Potenials and Limitations1citations
  • 2018Reversed austenite for enhancing ductility of martensitic stainless steel4citations
  • 2018Age-hardening behaviour, microstructure and corrosion resistance of the copper alloyed stainless steel 1.45425citations
  • 2018Age-hardening behaviour, microstructure and corrosion resistance of the copper alloyed stainless steel 1.4542citations
  • 2018Visualization of material-related susceptibility to pitting corrosion with the “KorroPad” indicator testcitations
  • 2018Precipitation behavior and corrosion resistance of nickel-free, high-nitrogen austenitic stainless steelscitations
  • 2018Heat treatment and corrosion resistance of cutlerycitations
  • 2018Influence of the post-weld surface treatment on the corrosion resistance of the duplex stainless steel 1.4062citations
  • 2018How to Detect Sensitivity on Aged Lean-Duplex Stainless Steel With Electrochemical Methodscitations
  • 2018SD effect in martensitic stainless steel under Q&P heat treatment conditioncitations
  • 2018Influence of austenitizing and tempering on the corrosion behavior and sensitization of martensitic stainless steel X50CrMoV1513citations
  • 2017Reversed austenite for enhancing ductility of martensitic stainless steel17citations
  • 2017Influence of the post-weld surface treatment on the corrosion resistance of the duplex stainless steel 1.40623citations
  • 2017Influence of the post-weld surface treatment on the corrosion resistance of duplex stainless steel 1.4062citations
  • 2016Influence of nitrogen on the corrosion resistance of martensitic stainless steels1citations
  • 2015Influence of solution annealing temperature and cooling medium on microstructure, hardness and corrosion resistance of martensitic stainless steel X46Cr1328citations
  • 2014Examination of the influence of heat treatment on the corrosion resistance of martensitic stainless steels30citations
  • 2013Influence of microstructure and surface treatment on the corrosion resistance of martensitic stainless steels 1.4116, 1.4034, and 1.402127citations

Places of action

Chart of shared publication
Ecke, Martin
2 / 3 shared
Herbster, Maria
1 / 2 shared
Harnisch, Karsten
1 / 2 shared
Michael, Oliver
3 / 7 shared
Lohmann, Christoph H.
1 / 3 shared
Heyn, Andreas
3 / 7 shared
Bertrand, Jessica
1 / 4 shared
Halle, Thorsten
3 / 10 shared
Dieck, Sebastian
2 / 3 shared
Schymura, Michael
1 / 1 shared
Kauss, Norman
3 / 3 shared
Müller, C.
6 / 25 shared
Halle, T.
13 / 37 shared
Lohmann, C. H.
1 / 1 shared
Baierl, T.
1 / 1 shared
Harnisch, K.
1 / 1 shared
Crackau, M.
1 / 1 shared
Bertrand, J.
1 / 7 shared
Heyn, A.
6 / 9 shared
Dieck, S.
4 / 7 shared
Ecke, M.
3 / 4 shared
Kauss, N.
6 / 6 shared
Pensel, P.
1 / 1 shared
Burkert, A.
1 / 1 shared
Roßberg, S.
1 / 1 shared
Baumann, O.
2 / 2 shared
Wagner, M.
1 / 12 shared
Fritsch, S.
1 / 2 shared
Babutzka, Martin
1 / 9 shared
Kromm, Arne
1 / 77 shared
Modersohn, W.
1 / 1 shared
Müller, Thoralf
1 / 15 shared
Müller, Christina
1 / 4 shared
Meyer, A.
1 / 14 shared
Babutzka, M.
2 / 2 shared
Müller, T.
1 / 24 shared
Müller, Th.
1 / 1 shared
Chart of publication period
2022
2021
2020
2019
2018
2017
2016
2015
2014
2013

Co-Authors (by relevance)

  • Ecke, Martin
  • Herbster, Maria
  • Harnisch, Karsten
  • Michael, Oliver
  • Lohmann, Christoph H.
  • Heyn, Andreas
  • Bertrand, Jessica
  • Halle, Thorsten
  • Dieck, Sebastian
  • Schymura, Michael
  • Kauss, Norman
  • Müller, C.
  • Halle, T.
  • Lohmann, C. H.
  • Baierl, T.
  • Harnisch, K.
  • Crackau, M.
  • Bertrand, J.
  • Heyn, A.
  • Dieck, S.
  • Ecke, M.
  • Kauss, N.
  • Pensel, P.
  • Burkert, A.
  • Roßberg, S.
  • Baumann, O.
  • Wagner, M.
  • Fritsch, S.
  • Babutzka, Martin
  • Kromm, Arne
  • Modersohn, W.
  • Müller, Thoralf
  • Müller, Christina
  • Meyer, A.
  • Babutzka, M.
  • Müller, T.
  • Müller, Th.
OrganizationsLocationPeople

article

Microstructure and surface investigations of TiAl6V4 and CoCr28Mo6 orthopaedic femoral stems

  • Rosemann, Paul
  • Lohmann, C. H.
  • Halle, T.
  • Baierl, T.
  • Harnisch, K.
  • Crackau, M.
  • Bertrand, J.
Abstract

<jats:title>Abstract</jats:title><jats:p>Total hip arthroplasties (THA) achieve very good clinical results and show annually increasing numbers of implantation. Interactions of the bone with the implants surface are of major importance for a stabile fixation and longevity of the implant. Therefore, manufacturing of the material and the implants as well as their surface properties can have a decisive influence on the functionality of the implant. The aim of the present study is the investigation of two commercially available femur stems with analytical methods. One stem is made of a TiAl6V4 wrought alloy for cementless application and the other one is made of a CoCr28Mo6 cast alloy for cemented fixation. The change of the production-related microstructure within the implant, differences between surface and bulk properties and potential correlations between the production-related changes to predict failures are addressed. Longitudinal cross sections of tested stems were prepared metallographically, investigated using optical and scanning electron microscopy including EDS and EBSD and correlated with micro hardness depth profiles. Due to production and processing, a subsurface layer is formed in both alloys. The TiAl6V4 wrought alloy stem exhibits a homogenous recrystallization microstructure with fine grains of micrometre size. The subsurface layer of the stem is deformed in parts with embedded corundum particles within the depth of 10 µm. Corundum residues were detected on the entire stem surface and partially covered by the applied calcium phosphate spray coating. The CoCr28Mo6 cast alloy stem shows a dendritic microstructure with chromium- and molybdenum-rich interdendritic precipitations and a surface layer of smaller globular grains in the size of 50 µm to 200 µm. The face centred cubic (fcc) crystal structure was predominantly detected in the phase analysis. The brittle hexagonal close packed (hcp) phase was evident at the implants surface. Similar to the TiAl6V4 alloy stem, embedded residues of corundum particles were detected on the implant surface. This study shows different surface integrities for both stems in comparison to the base material. The observed residues from the manufacturing processes are generally well-embedded into the implant surface, however if released they could impair the functionality of the endoprosthesis as the particles might negatively affect the sterilization process or might reduce metal corrosion resistance.</jats:p>

Topics
  • impedance spectroscopy
  • surface
  • molybdenum
  • grain
  • corrosion
  • chromium
  • phase
  • scanning electron microscopy
  • hardness
  • precipitation
  • Energy-dispersive X-ray spectroscopy
  • electron backscatter diffraction
  • Calcium
  • recrystallization
  • hot isostatic pressing
  • spray coating
  • dendritic microstructure