Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Dybalska, A.

  • Google
  • 2
  • 6
  • 28

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (2/2 displayed)

  • 2020Acoustic resonance for contactless ultrasonic cavitation in alloy melts27citations
  • 2020Progress in the development of a contactless ultrasonic processing route for alloy grain refinement1citations

Places of action

Chart of shared publication
Pericleous, Koulis
2 / 46 shared
Tonry, Catherine
2 / 8 shared
Beckwith, C.
2 / 4 shared
Bojarevics, Valdis
2 / 40 shared
Djambazov, Georgi
2 / 17 shared
Griffiths, W. D.
2 / 3 shared
Chart of publication period
2020

Co-Authors (by relevance)

  • Pericleous, Koulis
  • Tonry, Catherine
  • Beckwith, C.
  • Bojarevics, Valdis
  • Djambazov, Georgi
  • Griffiths, W. D.
OrganizationsLocationPeople

article

Progress in the development of a contactless ultrasonic processing route for alloy grain refinement

  • Pericleous, Koulis
  • Tonry, Catherine
  • Beckwith, C.
  • Bojarevics, Valdis
  • Djambazov, Georgi
  • Dybalska, A.
  • Griffiths, W. D.
Abstract

A high frequency tuned electromagnetic (EM) induction coil can be used to induce ultrasonic pressure waves leading to gas cavitation in alloy melts. This is a useful ‘contactless’ approach compared to the usual immersed sonotrode technique. One then expects the same benefits obtained in the traditional ultrasonic treatment (UST) of melts, such as degassing, microstructure refinement and dispersion of particles. However, such an approach avoids melt contamination due to probe erosion prevalent in immersed sonotrodes and it has the potential to be used on higher temperature and reactive alloys. Induction stirring due to the Lorentz force produced by the coil is an added benefit, allowing for the treatment of large melt volumes, a current limitation of UST systems. At ultrasonic frequencies (> 20 kHz), due to the ‘skin effect’ electromagnetic forces vibrate just a thin volume by the surface of the metal facing the induction source. These vibrations are transmitted as acoustic pressure waves into the bulk and to achieve sufficient fluctuation amplitudes for cavitation, acoustic resonance is sought by carefully adjusting the generator frequency. This is akin to the tuning of a musical instrument, where the geometry and sound properties of the metal, crucible and surrounding structure play an important part. In terms of modelling, this is a multi-physics system, since fluid flow with heat transfer and phase change are coupled to electromagnetic and acoustic fields. The various models used and their coupling are explained in this paper, together with the various complications arising by the physics of cavitation. Experimental validation is obtained on a prototype rig featuring a conical induction coil inserted into the melting crucible containing the various alloys being examined. When resonance is reached, measurements demonstrate strong stirring, evidence of cavitation and finally grain refinement.

Topics
  • impedance spectroscopy
  • dispersion
  • surface
  • grain
  • melt
  • reactive
  • ultrasonic
  • degassing