People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Bojarevics, Valdis
University of Greenwich
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (40/40 displayed)
- 2024A process to produce a continuous liquid metal stream for gas atomisation
- 2021Enhancement of mechanical properties of pure aluminium through contactless melt sonicating treatmentcitations
- 2020Acoustic resonance for contactless ultrasonic cavitation in alloy meltscitations
- 2020Progress in the development of a contactless ultrasonic processing route for alloy grain refinementcitations
- 2020Contactless ultrasonic treatment in direct chill casting
- 2019The contactless electromagnetic sonotrodecitations
- 2019Contactless ultrasonic cavitation in alloy meltscitations
- 2019Manufacturing of a metal component or a metal matrix composite component involving contactless induction of high - frequency vibrations
- 2016Multiple timescale modelling of particle suspensions in metal melts subjected to external forces
- 2016Modeling of convection, temperature distribution and dendritic growth in glass-fluxed nickel meltscitations
- 2015Contactless ultrasound generation in a cruciblecitations
- 2014The ExoMet project: EU/ESA research on high-performance light-metal alloys and nanocompositescitations
- 2011Numerical model of electrode induction melting for gas atomizationcitations
- 2011Multi-physics modeling in the electromagnetic levitation and melting of reactive metals
- 2011Continuous casting of titanium in the cold crucible
- 2010Magnetic levitation of large liquid volume
- 2010Magnetic levitation of a large mass of liquid metal
- 2009Vacuum arc remelting time dependent modelling
- 2009Solutions for the metal-bath interface in aluminium electrolysis cells
- 2009Effect of varying electromagnetic field on the VAR process
- 2008Vacuum arc remelting time dependent modelling
- 2008Modelling of electromagnetic levitation – consequences on non-contact physical properties measurementscitations
- 2007Pseudo-spectral solutions for fluid flow and heat transfer in electro-metallurgical applicationscitations
- 2007The study of flow and temperature fields in conducting droplets suspended in a DC/AC combination field
- 2007Liquid metal induction heating modelling for cold crucible applications
- 2006Busbar sizing modeling tools: comparing an ANSYS® based 3D model with the versatile 1D model part of MHD-Valdis
- 2006Numerical simulation of free surface behaviour of a molten liquid metal droplet with and without electromagnetic induction
- 2006Cold crucible melting of reactive metals using combined DC and AC magnetic fields
- 2006Experimental and numerical study of the cold crucible melting processcitations
- 2005Pseudo-spectral solutions for fluid flow and heat transfer in electro-metallurgical applications
- 2005Maximising heat transfer efficiency in the cold crucible induction melting process
- 2005The use of combined DC and AC fields to increase superheat in an induction skull melting furnace
- 2004Modelling induction skull melting design modificationscitations
- 2004The development and experimental validation of a numerical model of an induction skull melting furnacecitations
- 2003AC & DC magnetic levitation and semi-levitation modelling
- 2003Modelling induction skull melting design modifications
- 2003Experimental and numerical study of the cold crucible melting process
- 2001Modelling induction melting energy savings
- 2001Dynamics of magnetically suspended fluid
- 2000Modeling the dynamics of Magnetic Semilevitation Meltingcitations
Places of action
Organizations | Location | People |
---|
article
Progress in the development of a contactless ultrasonic processing route for alloy grain refinement
Abstract
A high frequency tuned electromagnetic (EM) induction coil can be used to induce ultrasonic pressure waves leading to gas cavitation in alloy melts. This is a useful ‘contactless’ approach compared to the usual immersed sonotrode technique. One then expects the same benefits obtained in the traditional ultrasonic treatment (UST) of melts, such as degassing, microstructure refinement and dispersion of particles. However, such an approach avoids melt contamination due to probe erosion prevalent in immersed sonotrodes and it has the potential to be used on higher temperature and reactive alloys. Induction stirring due to the Lorentz force produced by the coil is an added benefit, allowing for the treatment of large melt volumes, a current limitation of UST systems. At ultrasonic frequencies (> 20 kHz), due to the ‘skin effect’ electromagnetic forces vibrate just a thin volume by the surface of the metal facing the induction source. These vibrations are transmitted as acoustic pressure waves into the bulk and to achieve sufficient fluctuation amplitudes for cavitation, acoustic resonance is sought by carefully adjusting the generator frequency. This is akin to the tuning of a musical instrument, where the geometry and sound properties of the metal, crucible and surrounding structure play an important part. In terms of modelling, this is a multi-physics system, since fluid flow with heat transfer and phase change are coupled to electromagnetic and acoustic fields. The various models used and their coupling are explained in this paper, together with the various complications arising by the physics of cavitation. Experimental validation is obtained on a prototype rig featuring a conical induction coil inserted into the melting crucible containing the various alloys being examined. When resonance is reached, measurements demonstrate strong stirring, evidence of cavitation and finally grain refinement.