People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Budenkova, Olga
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (15/15 displayed)
- 2024Formation of varying dendritic morphologies in a directionally solidifying Ga-In-Bi alloy
- 2022Effect of vertical electromagnetic stirring on solute distribution in billet continuous casting processcitations
- 2021Numerical Simulation of Macrosegregation Formation in a 2.45 ton Steel Ingot Using a Three-Phase Equiaxed Solidification Modelcitations
- 2020Comparison of two-phase and three-phase macroscopic models of equiaxed grain growth in solidification of binary alloy with electromagnetic stirring
- 2020Numerical simulations of turbulent flow in an electromagnetically levitated metallic droplet using k-Ω SST and Reynolds stress models
- 2019Three-phase numerical modeling for equiaxed solidification of Sn–10 wt.%Pb alloy under forced convection driven by electromagnetic forcecitations
- 2016Macrosegregations in Sn-3wt%Pb alloy solidification: Experimental and 3D numerical simulation investigationscitations
- 2015Thermoelectric effects on electrically conducting particles in liquid metalcitations
- 2014Magnetic Fields, Convection and Solidificationcitations
- 2014Magnetic Fields, Convection and Solidificationcitations
- 2014In Situ and Real-Time Analysis of TEM Forces Induced by a Permanent Magnetic Field during Solidification of Al-4wt%Cucitations
- 2011A numerical benchmark on the prediction of macrosegregation in binary alloys
- 2011First analysis of a numerical benchmark for 2D columnar solidification of binary alloys
- 2010Influence of forced/natural convection on segregation during the directional solidification of Al-based binary alloys.
- 2009Call for contributions to a numerical benchmark problem for 2D columnar solidification of binary alloyscitations
Places of action
Organizations | Location | People |
---|
article
Comparison of two-phase and three-phase macroscopic models of equiaxed grain growth in solidification of binary alloy with electromagnetic stirring
Abstract
Simulations of equiaxed solidification using two-phase and three-phase models are performed for the experimental benchmark AFRODITE with electromagnetic stirring. A threephase model which was presented by authors elsewhere accounts for solid phase, inter-and extradendritic liquid phases. With respect to that model, the two-phase approach can be considered as reduced or simplified, yet, this implies also less number of assumptions regarding closure relations. One of parameters which exists in both models and which cannot be transposed directly from one model to another is critical packing fraction at which solid phase is supposed to be blocked. In simulations a large difference in evolution of convective flow and developement of the solid phase was found. As expected, final segregation obtained with twophase model is stronger, yet, it is qualitatively similar to the segregation pattern obtained with three-phase model.