People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Huzaisham, Nur Athirah
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (4/4 displayed)
- 2020The Mechanical Performance of Tile Based on Plastic Waste (PW) Mixed Wood Waste (MWW)citations
- 2020The Mechanical Performance of Pipe Based on Fiberglass Reinforced with Plastic Waste (FRPW) Compositescitations
- 2020Utilization of Banana (Musa Paradisiaca) Peel As Bioplastic for Planting Bag Application
- 2019Graphene Composite Blueberries based Pencil Lead act as Superhydrophobic Coating on Plastic Surfaces for Solar Application
Places of action
Organizations | Location | People |
---|
article
The Mechanical Performance of Pipe Based on Fiberglass Reinforced with Plastic Waste (FRPW) Composites
Abstract
<jats:title>Abstract</jats:title><jats:p>The project research present the mechanical performance of pipe based on fiberglass reinforced with plastic waste (FRPW) in plant application system. The use of FRPW able to reduce corrosion problem faced by oil and gas industry. In this study involved four types of combination ratio of fiberglass reinforced with plastic waste (FRPW) of 1.0: 0.5; 1.0:1.0; 1.0:1.5; and 1.0:2.0. The fabrication process started with grinding process of plastic waste into small size in the range of 0.1 mm. Fiberglass then reinforced with plastic waste by mixed with resin and hardener with ratio of 2: 1 and poured into the cylinder mould. There is a possibility fiberglass from 10-40% by weight result in substantial increase in elastic modulus, accompanied by an increase in strength with reduced ductility 1.0 of ratio. The tensile test showed clearly exhibited that 1.0 of plastic waste reinforced fiberglass with stand the higher maximum force value of 2.69 kN. For the bending test ratio of 1.0 of plastic waste withstand the higher bending strength at 5.29 kN. Ratio of 1.0 FRPW is more suitable for produced pipe in plant application system due to matrix-reinforcement bonding for each pipe sample after conducting tensile strength. The result obtained that ratio 1.0 of FRPW shown good matrix-reinforcement bonding.</jats:p>