People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Mirihanage, Wu
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (24/24 displayed)
- 2023The influence of a large build area on the microstructure and mechanical properties of PBF-LB Ti-6Al-4V alloycitations
- 2023Solidification microstructure variations in additively manufactured Ti-6Al-4V using laser powder bed fusioncitations
- 2022Decisive influence of critical process parameters on the microstructure and tensile properties of friction stir back extruded magnesium alloy tubescitations
- 2021Synchrotron X-ray observation of flow evolution during fusion welding.
- 2021Solidification microstructure and residual stress correlations in direct energy deposited type 316L stainless steelcitations
- 2021Understanding thermal exfoliation of h-BN using in situ X-ray diffraction
- 2020Impact failure in two silicates revealed by ultrafast, in situ, synchrotron X-ray microscopycitations
- 2020In-situ probing of the thermal treatment of h-BN towards exfoliationcitations
- 2016The use of in situ X-ray imaging methods in the research and development of magnesium-based grain-refined and nanocomposite materialscitations
- 2015Ultra-fast in-situ X-ray studies of evolving columnar dendrites in solidifying steel weld poolscitations
- 2015Equiaxed dendritic solidification and grain refiner potency characterised through in situ X-radiographycitations
- 2014Time-resolved X-ray diffraction studies of solidification microstructure evolution in weldingcitations
- 2013In-situ X-ray radiographic observations of eutectic transformations in Al-Cu alloys
- 2013Combined in situ X-ray radiographic observations and post-solidification metallographic characterisation of eutectic transformations in Al-Cu alloy systemscitations
- 2012Simulation of international space station microgravity directional solidification experiments on columnar-to-equiaxed transitioncitations
- 2012A combined enthalpy/front tracking method for modelling melting and solidification in laser weldingcitations
- 2012In-situ observation of transient columnar dendrite growth in the presence of thermo-solutal convectioncitations
- 2011Effects of gravity on the columnar to equiaxed transition in directional solidification
- 2011Numerical modelling of the Material Science Lab - Low Gradient Furnace (MSL-LGF) microgravity directional solidification experiments on the columnar to equiaxed transitioncitations
- 2011Investigation of columnar-to-equiaxed transition in solidification processing of AlSi alloys in microgravity - The CETSOL projectcitations
- 2010Prediction of as-cast grain size distribution from a model of equiaxed solidification with free dendrite transport
- 2009Prediction of columnar to equiaxed transition in alloy castings with convective heat transfer and equiaxed grain transportation
- 2009Comparison of nucleation and growth mechanisms in alloy solidification to those in metallic glass crystallisation - Relevance to modelingcitations
- 2009Combined analytical/numerical modelling of nucleation and growth during equiaxed solidification under the influence of thermal convectioncitations
Places of action
Organizations | Location | People |
---|
article
Ultra-fast in-situ X-ray studies of evolving columnar dendrites in solidifying steel weld pools
Abstract
<p>High-brilliance polychromatic synchrotron radiation has been used to conduct in-situ studies of the solidification microstructure evolution during simulated welding. The welding simulations were realized by rapidly fusing ∼ 5 mm spot in Fe-Cr-Ni steel. During the solid- liquid-solid phase transformations, a section of the weld pool was placed in an incident 50-150 keV polychromatic synchrotron X-ray beam, in a near-horizontal position at a very low inclination angle. Multiple high-resolution 2D detectors with very high frame rates were utilized to capture time resolved X-ray diffraction data from suitably oriented solid dendrites evolving in the weld pool. Comprehensive analysis of the diffraction data revealed individual and overall dendritic growth characteristics and relevant melt and solid flow dynamics during weld pool solidification, which was completed within 1.5 s. Columnar dendrite tip velocities were estimated from the experimental data and during early stages of solidification were exceeded 4 mm/s. The most remarkable observation revealed through the time-resolved reciprocal space observations are correlated to significant tilting of columnar type dendrites at their root during solidification, presumably caused by convective currents in the weld pool. When the columnar dendrite tilting are transformed to respective metric linear tilting velocities at the dendrite tip; tilting velocities are found to be in the same order of magnitude as the columnar tip growth velocities, suggesting a highly transient nature of growth conditions.</p>