People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Kestens, Leo A. I.
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (14/14 displayed)
- 2024Comparative analysis of crystal plasticity models in predicting deformation texture in IF-Steelcitations
- 2023Evaluation of 3D-Printed Magnetic Materials For Additively-Manufactured Electrical Machinescitations
- 2023Process optimization and characterization of dense pure copper parts produced by paste-based 3D micro-extrusioncitations
- 2023Material Engineering of 3D-Printed Silicon Steel Alloys for the Next Generation of Electrical Machines and Sustainable Electromobilitycitations
- 2022Analysis of ESAFORM 2021 cup drawing benchmark of an Al alloy, critical factors for accuracy and efficiency of FE simulationscitations
- 2022Analysis of ESAFORM 2021 cup drawing benchmark of an Al alloy, critical factors for accuracy and efficiency of FE simulationscitations
- 2022Analysis of ESAFORM 2021 cup drawing benchmark of an Al alloy, critical factors for accuracy and efficiency of FE simulations.citations
- 2022The Role of Parent Phase Topology in Double Young–Kurdjumow–Sachs Variant Selection during Phase Transformation in Low-Carbon Steelscitations
- 2021Microstructure, Anisotropy and Formability Evolution of an Annealed AISI 430 Stainless Steel Sheetcitations
- 2017Use of local electrochemical methods (SECM, EC-STM) and AFM to differentiate microstructural effects (EBSD) on very pure coppercitations
- 2016The effect of heating rate on the recrystallization behavior in cold rolled ultra low carbon steelcitations
- 2015Shear banding and its contribution to texture evolution in rotated Goss orientations of BCC structured materialscitations
- 2012Texture evolution during asymmetrical warm rolling and subsequent annealing of electrical steelcitations
- 2012Texture Control in Steel and Aluminium Alloys by Rolling and Recrystallization in Non-Conventional Sheet Manufacturingcitations
Places of action
Organizations | Location | People |
---|
conferencepaper
Shear banding and its contribution to texture evolution in rotated Goss orientations of BCC structured materials
Abstract
Due to progressive deformation, the dislocation densities in crystals are accumulated and the resistance of grains to further deformation increases. Homogeneous deformation becomes energetically less favorable, which may result for some orientations in strain localization. In-grain shear banding, a typical kind of localized deformation in metals with BCC crystal structure, has been accounted for by the geometric softening of crystals. In this study, the occurrence of shear bands in rotated Goss ({110}<110>) orientations of Fe-Si steel is predicted by crystal plasticity simulations and validated by EBSD measurements. It was observed and confirmed by crystal plasticity modeling that such shear bands exhibit stable cube orientations The orientation evolution of crystals in shear bands and its impact on annealing texture of materials are also described. ; Materials Science and Engineering ; Mechanical, Maritime and Materials Engineering