Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Hameed, S. M.

  • Google
  • 2
  • 10
  • 632

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (2/2 displayed)

  • 2020Characteristics of Earth Electrodes Under High Frequency Conditions: Numerical Modelling4citations
  • 2004Hand-held thoracic sonography for detecting post-traumatic pneumothoraces628citations

Places of action

Chart of shared publication
Hamilton, D. R.
1 / 1 shared
Rowan, K.
1 / 1 shared
Nicolaou, S.
1 / 1 shared
Ball, C. G.
1 / 1 shared
Simons, R.
1 / 1 shared
Dulchavsky, S. A.
1 / 1 shared
Brown, R.
1 / 11 shared
Liu, D.
1 / 37 shared
Kirkpatrick, Andrew W.
1 / 1 shared
Sirois, M.
1 / 1 shared
Chart of publication period
2020
2004

Co-Authors (by relevance)

  • Hamilton, D. R.
  • Rowan, K.
  • Nicolaou, S.
  • Ball, C. G.
  • Simons, R.
  • Dulchavsky, S. A.
  • Brown, R.
  • Liu, D.
  • Kirkpatrick, Andrew W.
  • Sirois, M.
OrganizationsLocationPeople

article

Characteristics of Earth Electrodes Under High Frequency Conditions: Numerical Modelling

  • Hameed, S. M.
Abstract

<jats:title>Abstract</jats:title><jats:p>The earthing segments of electrical power systems play an important role in ensuring human safety. A core function of these earthing systems is to maintain reliable operation and ensure safety for personnel and apparatus during fault conditions. Earthing electrodes can be buried in the soil to dissipate lightning and fault currents into the earth and limit the effect of any magnitude of voltage and current generated between different contact points to earth structures that may be occupied by people or sensitive electrical equipment. In order to obtain the best design of an electrical system to protect power system installations and ensure human safety against abnormal conditions, it is useful to clarify the behaviour of earthing systems subjected to variable frequency currents. In this paper, a numerical study is thus implemented to investigate the behaviour of earthing electrodes subjected to variable frequency current using the computational software program HIFREQ/FFTSESCDEGS with a uniform equivalent soil model. The effect of soil resistivity and permittivity on the behaviour of earthing electrodes is thus obtained, and the relationship between the length of earthing electrodes and their earthing responses over a wide range of frequencies from DC up to 1MHz is identified.</jats:p>

Topics
  • impedance spectroscopy
  • resistivity