People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Ríos, C. A.
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (1/1 displayed)
Places of action
Organizations | Location | People |
---|
article
Synthesis and characterization of inorganic polymers from the alkali activation of an aluminosilicate
Abstract
<p>This paper presents the results of the synthesis and characterization of inorganic polymers (IP) from aluminosilicates: bentonite (BT) and pumice (PP). The synthesis of IP, was carried out by two methods involving alkaline activation, at room temperature and 80 ± 5 °C, using as activating agent sodium silicate both commercial and analytical (Na<sub>2SiO</sub>3). Sodium hydroxide (NaOH) at 3 M, 7 M and 12 M was added. A lower degree of polymerization was obtained by using analytical precursors subjected to room temperature and 80 ± 5°C. Replacement of heating by the use of the commercial activating agent with greater alkalinity allows the formation of a 3D network. The materials were structurally characterized by FTIR spectroscopy with Attenuated Reflectance (ATR), Scanning Electron Microscope (SEM) and X -ray diffraction (DRX).</p>