People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Zhang, Xiaodan
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (11/11 displayed)
- 2022Heterogeneous microstructure and failure analysis of yaw gear rings
- 2022Heterogeneous microstructure and failure analysis of yaw gear rings
- 2020Multi-axial Fatigue of Head-Hardened Pearlitic and Austenitic Manganese Railway Steels: A Comparative Studycitations
- 2020Realizing the Potential of RF-Sputtered Hydrogenated Fluorine-Doped Indium Oxide as an Electrode Material for Ultrathin SiO x/Poly-Si Passivating Contactscitations
- 2020Realizing the Potential of RF-Sputtered Hydrogenated Fluorine-Doped Indium Oxide as an Electrode Material for Ultrathin SiO x /Poly-Si Passivating Contactscitations
- 2019Local stress and strain in heterogeneously deformed aluminum: a comparison analysis by microhardness, electron microscopy and finite element modellingcitations
- 2019Comparison of local stress and strain in a heterogeneouslycompressed AA 1050 ring by electron microscopy, microhardness and finite element modelling
- 2018Evaluation of local strength via microstructural quantification in a pearlitic rail steel deformed by simultaneous compression and torsioncitations
- 2017Local microstructure and flow stress in deformed metalscitations
- 2015Microstructure and hardness development in a copper-nickel diffusion gradient model system
- 2014Grinding induced martensite on the surface of rails
Places of action
Organizations | Location | People |
---|
article
Comparison of local stress and strain in a heterogeneouslycompressed AA 1050 ring by electron microscopy, microhardness and finite element modelling
Abstract
An investigation comparing the local stress and strain in a centimeter-scale heterogeneously-compressed AA 1050 ring under nearly full sticking conditions has been carried out. Three complementary techniques were used, covering multiple length scales from nanometers to tens of millimeters, namely electron microscopy (electron backscatter diffraction), microhardness, and finite element modelling. To underpin the present findings on the centimeter-scale heterogeneous structure, the same techniques were applied in an analysis of the homogeneous microstructure resulting from compression of cylinders of the same original hot-extruded AA 1050 material. The analyses support the idea that the local-region microstructure in a heterogeneous structure evolves in accordance with universal mechanisms and principles established for the deformation microstructure of polycrystalline metals.