Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Okitsu, Y.

  • Google
  • 1
  • 6
  • 3

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (1/1 displayed)

  • 2019In-situ neutron diffraction study on the deformation of a TRIP-assisted multi-phase steel composed of ferrite, austenite and martensite3citations

Places of action

Chart of shared publication
Gao, S.
1 / 11 shared
Shibata, A.
1 / 2 shared
Harjo, S.
1 / 5 shared
Tsuji, N.
1 / 6 shared
Lavakumar, A.
1 / 1 shared
Gong, W.
1 / 4 shared
Chart of publication period
2019

Co-Authors (by relevance)

  • Gao, S.
  • Shibata, A.
  • Harjo, S.
  • Tsuji, N.
  • Lavakumar, A.
  • Gong, W.
OrganizationsLocationPeople

article

In-situ neutron diffraction study on the deformation of a TRIP-assisted multi-phase steel composed of ferrite, austenite and martensite

  • Gao, S.
  • Shibata, A.
  • Harjo, S.
  • Tsuji, N.
  • Lavakumar, A.
  • Gong, W.
  • Okitsu, Y.
Abstract

<jats:title>Abstract</jats:title><jats:p>Multi-phase steels showing transformation induced plasticity (TRIP), can exhibit an excellent combination of high strength and good ductility by the aid of martensitic transformation during deformation. Even though TRIP-assisted multi-phase steels have been widely used in industry, the role of each phase in the enhancement of mechanical properties is still unclear given their complicated microstructures. In order to understand better the nature of the TRIP effect, the mechanical interaction between different phases at the micro-scale should be clarified. In the present study, the mechanical behavior of a transformation induced plasticity (TRIP) assisted multi-phase steel, has been characterized by <jats:italic>in-situ</jats:italic> neutron diffraction during tensile testing. The result of strain partitioning between the different phases obtained from the <jats:italic>in-situ</jats:italic> neutron analysis revealed that the martensite phase took much more elastic strain than the ferrite and retained austenite phases, which suggests that the work hardening behavior in the present steel is affected by the higher load borne by deformation-induced martensite.</jats:p>

Topics
  • impedance spectroscopy
  • microstructure
  • phase
  • strength
  • steel
  • neutron diffraction
  • plasticity
  • ductility