Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Selvakumar, S.

  • Google
  • 1
  • 3
  • 1

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (1/1 displayed)

  • 2019Modelling, Calibration and Fabrication of Electrical Capacitance Tomography Sensor for Bone Imaging1citations

Places of action

Chart of shared publication
Ambika, M.
1 / 1 shared
Manikandan, K.
1 / 2 shared
Padmanaban, R.
1 / 3 shared
Chart of publication period
2019

Co-Authors (by relevance)

  • Ambika, M.
  • Manikandan, K.
  • Padmanaban, R.
OrganizationsLocationPeople

article

Modelling, Calibration and Fabrication of Electrical Capacitance Tomography Sensor for Bone Imaging

  • Ambika, M.
  • Selvakumar, S.
  • Manikandan, K.
  • Padmanaban, R.
Abstract

<jats:title>Abstract</jats:title><jats:p>Electrical capacitance tomography is a technique to measure internal permittivity distribution based on external capacitance measurements which in turn generate a cross-sectional image representing the permittivity distribution thereby the material distribution. It possesses the advantages of non-radioactive, non-intrusive, non-invasive, high imaging speed and low cost over the conventional medical imaging techniques. Inter-electrode measurements are done by placing electrodes around the non-conductive dielectric medium cylinder inside which, the medium to be imaged is placed. This paper emphasizes on modelling and fabricating an electrical capacitance tomography sensor using ANSYS APDL for bone for which the sensor is calibrated using air and water. ECT sensor is modelled and fabricated by mounting 12 identical rectangular copper electrodes were placed symmetrically outside the Poly-vinyl chloride (PVC) cylindrical tube. The output from sensors can be converted to digital voltage values used for image reconstruction in MATLAB.</jats:p>

Topics
  • impedance spectroscopy
  • tomography
  • copper