People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Baltatu, Madalina Simona
Isaac Newton Group
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (11/11 displayed)
- 2023Bredigite-CNTs Reinforced Mg-Zn Bio-Composites to Enhance the Mechanical and Biological Properties for Biomedical Applicationscitations
- 2022Carbon nanotube (CNT) encapsulated magnesium-based nanocomposites to improve mechanical, degradation and antibacterial performances for biomedical device applicationscitations
- 2022Experimental Research on New Developed Titanium Alloys for Biomedical Applicationscitations
- 2022Mechanical Characterization and In Vitro Assay of Biocompatible Titanium Alloyscitations
- 2021New Titanium Alloys, Promising Materials for Medical Devicescitations
- 2021New Titanium Alloys, Promising Materials for Medical Devicescitations
- 2020Development of New Advanced Ti-Mo Alloys for Medical Applicationscitations
- 2019Characterization and Mechanical Proprieties of New TiMo Alloys Used for Medical Applicationscitations
- 2019Biocompatible Titanium Alloys used in Medical Applicationscitations
- 2019Ecological process of energy growth of hydraulic turbines used in protected areas in Romania
- 2017Ti-Mo-Zr-Ta Alloy for Biomedical Applications: Microstructures and Mechanical Propertiescitations
Places of action
Organizations | Location | People |
---|
article
Ecological process of energy growth of hydraulic turbines used in protected areas in Romania
Abstract
<jats:title>Abstract</jats:title><jats:p>The energy-boosting of hydraulic turbines by improving efficiency and service life is a continuing concern of this century when trying to move from a fossil fuel polluting energy to a wider use of electric power to propel cars. Increased performance of these hydraulic turbines can be achieved by depositing thin, hydro-abrasion-resistant, thin layers. In this paper we will analyze mechanically and structurally thin, adherent-hard layers that have been deposited on a special stainless steel. The aim is to increase the energy efficiency of hydraulic turbines by increasing the hydro-abrasion resistance of the blades. The deposits are made with plasma-based thermal spraying powders / electrodes. The microstructural tests will consist of optical and SEM microscopic analysis of the deposited material and layer, and the mechanical ones will consist of the analysis of elasticity and adhesion.</jats:p>