Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Degischer, Hp

  • Google
  • 2
  • 8
  • 5

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (2/2 displayed)

  • 2019Study of elasto-plastic deformation in a cast AlCu7 alloy1citations
  • 2008Neutron diffraction studies of residual stresses in functionally graded alumina/zirconia ceramics4citations

Places of action

Chart of shared publication
Schöbel, M.
1 / 8 shared
Fernández, R.
1 / 11 shared
Vrana, M.
1 / 2 shared
Pyzalla, Ar
1 / 1 shared
Lukas, P.
1 / 4 shared
Borbely, A.
1 / 1 shared
Anne, G.
1 / 23 shared
Vleugels, Jozef
1 / 342 shared
Chart of publication period
2019
2008

Co-Authors (by relevance)

  • Schöbel, M.
  • Fernández, R.
  • Vrana, M.
  • Pyzalla, Ar
  • Lukas, P.
  • Borbely, A.
  • Anne, G.
  • Vleugels, Jozef
OrganizationsLocationPeople

article

Study of elasto-plastic deformation in a cast AlCu7 alloy

  • Degischer, Hp
  • Schöbel, M.
  • Fernández, R.
Abstract

<jats:title>Abstract</jats:title><jats:p>The need for efficient and clean solutions, due to the increasing current environmental regulations puts extra pressure on new combustion engine development, to compete in a market with alternative driving concepts. Downsizing and weight reduction can reduce the engine emission and efficiency, but require light alloys with superior thermo-mechanical properties for high temperature exposure to maintain the same engine performance. Cast Al-Cu could be alternative to standard Al-Si alloys for new engine generations due to their higher temperature strength, creep-resistance and long term stability of engine components. In Al-Si and Al-Cu cast alloys with heterogeneous microstructures a composite-like deformation behavior is responsible for superior high temperature properties. Stiff Si or Al<jats:sub>2</jats:sub>Cu particles, respectively reinforce a ductile α-Al matrix to a composite with improved thermo-mechanical strength. However, different Young’s moduli and coefficients of thermal expansion are responsible for micro stress gradients and unpredictable micro crack formation under operation. These micro-mechanical deformation mechanisms in Al-Si and Al-Cu systems, responsible for crack initiation and growth, have been scarcely investigated so far.</jats:p><jats:p>This manuscript describes an example of elasto-plastic deformation mechanisms in an AlCu7 alloy. Tensile testing shows anomalous macroscopic deformation behavior indicating unknown internal micro-mechanical processes. External loading until yield strength and beyond are applied under laboratory conditions and during in-situ neutron diffraction. The results of macroscopic deformation and micro strain evolution are compared and correlated with the heterogeneous micro structure. High resolution synchrotron computed tomography reveals conclusions on the micro-mechanic deformation mechanisms and their effects on the macroscopic damage initiation and material’s service performance.</jats:p>

Topics
  • impedance spectroscopy
  • microstructure
  • polymer
  • tomography
  • crack
  • strength
  • composite
  • neutron diffraction
  • combustion
  • thermal expansion
  • yield strength
  • deformation mechanism
  • creep