Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Budenkova, Olga

  • Google
  • 15
  • 68
  • 143

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (15/15 displayed)

  • 2024Formation of varying dendritic morphologies in a directionally solidifying Ga-In-Bi alloycitations
  • 2022Effect of vertical electromagnetic stirring on solute distribution in billet continuous casting process6citations
  • 2021Numerical Simulation of Macrosegregation Formation in a 2.45 ton Steel Ingot Using a Three-Phase Equiaxed Solidification Model5citations
  • 2020Comparison of two-phase and three-phase macroscopic models of equiaxed grain growth in solidification of binary alloy with electromagnetic stirringcitations
  • 2020Numerical simulations of turbulent flow in an electromagnetically levitated metallic droplet using k-Ω SST and Reynolds stress modelscitations
  • 2019Three-phase numerical modeling for equiaxed solidification of Sn–10 wt.%Pb alloy under forced convection driven by electromagnetic force2citations
  • 2016Macrosegregations in Sn-3wt%Pb alloy solidification: Experimental and 3D numerical simulation investigations24citations
  • 2015Thermoelectric effects on electrically conducting particles in liquid metal24citations
  • 2014Magnetic Fields, Convection and Solidification5citations
  • 2014Magnetic Fields, Convection and Solidification5citations
  • 2014In Situ and Real-Time Analysis of TEM Forces Induced by a Permanent Magnetic Field during Solidification of Al-4wt%Cu2citations
  • 2011A numerical benchmark on the prediction of macrosegregation in binary alloyscitations
  • 2011First analysis of a numerical benchmark for 2D columnar solidification of binary alloyscitations
  • 2010Influence of forced/natural convection on segregation during the directional solidification of Al-based binary alloys.citations
  • 2009Call for contributions to a numerical benchmark problem for 2D columnar solidification of binary alloys70citations

Places of action

Chart of shared publication
Eckert, Sven
1 / 7 shared
Shevchenko, Natalia
1 / 4 shared
Chichingnoud, Guy
1 / 1 shared
Delannoy, Yves
4 / 8 shared
Wang, En-Gang
1 / 1 shared
Wang, Tao
2 / 18 shared
Fautrelle, Yves
8 / 24 shared
Wang, Engang
2 / 3 shared
Tao, Wang
1 / 3 shared
Gagnoud, A.
1 / 10 shared
Wang, T.
1 / 17 shared
Wang, E.
1 / 2 shared
Delannoy, Y.
1 / 7 shared
Fautrelle, Y.
5 / 30 shared
Hachani, L.
1 / 7 shared
Botton, V.
1 / 3 shared
Henry, D.
1 / 5 shared
Boussaa, R.
1 / 2 shared
Hadid, H. Ben
1 / 1 shared
Zaidat, K.
1 / 13 shared
Wang, J.
1 / 86 shared
Ren, Z. M.
1 / 8 shared
Baltaretu, F.
1 / 1 shared
Li, Xiaojian
1 / 15 shared
Letout, S.
1 / 1 shared
Zaidat, Kader
2 / 11 shared
Mangelinck-Noël, Nathalie
4 / 57 shared
Kaldre, Imants
3 / 4 shared
Salloum-Abou-Jaoude, Georges
3 / 5 shared
Wang, Jiang
3 / 5 shared
Reinhart, Guillaume
3 / 33 shared
Bojarevics, Andris
3 / 4 shared
Buligins, Leonids
3 / 3 shared
Thi, Henri Nguyen
1 / 1 shared
Ren, Zhong Ming
3 / 3 shared
Li, Xi
2 / 10 shared
Hachani, Lakhdar
2 / 5 shared
Nguyen Thi, Henri
1 / 1 shared
Nguyen-Thi, Henri
1 / 35 shared
Lafford, Tamzin, A.
1 / 1 shared
Combeau, Hervé
2 / 50 shared
Duterrail, Yves
2 / 2 shared
Kumar, Arvind
2 / 15 shared
Bellet, Michel
3 / 69 shared
Zaloznik, Miha
2 / 3 shared
Gandin, Charles-André
3 / 135 shared
Rady, Mohamed
2 / 2 shared
Dussoubs, Bernard
2 / 4 shared
Gobin, Dominique
2 / 4 shared
Mosbah, Salem
3 / 12 shared
Goyeau, Benoit
2 / 3 shared
Quatravaux, Thibault
1 / 5 shared
Arquis, Eric
2 / 3 shared
Zimmermann, G.
1 / 20 shared
Zaïdat, K.
1 / 5 shared
Weiss, A.
1 / 2 shared
Noeppel, A.
1 / 2 shared
Wang, X. D.
1 / 6 shared
Ciobanas, A. I.
1 / 1 shared
Kumar, A.
1 / 94 shared
Gobin, D.
1 / 4 shared
Goyeau, B.
1 / 1 shared
Dussoubs, B.
1 / 1 shared
Duterrail, Y.
1 / 3 shared
Arquis, E.
1 / 1 shared
Rady, M.
1 / 2 shared
Zazloznik, M.
1 / 1 shared
Combeau, H.
1 / 5 shared
Chart of publication period
2024
2022
2021
2020
2019
2016
2015
2014
2011
2010
2009

Co-Authors (by relevance)

  • Eckert, Sven
  • Shevchenko, Natalia
  • Chichingnoud, Guy
  • Delannoy, Yves
  • Wang, En-Gang
  • Wang, Tao
  • Fautrelle, Yves
  • Wang, Engang
  • Tao, Wang
  • Gagnoud, A.
  • Wang, T.
  • Wang, E.
  • Delannoy, Y.
  • Fautrelle, Y.
  • Hachani, L.
  • Botton, V.
  • Henry, D.
  • Boussaa, R.
  • Hadid, H. Ben
  • Zaidat, K.
  • Wang, J.
  • Ren, Z. M.
  • Baltaretu, F.
  • Li, Xiaojian
  • Letout, S.
  • Zaidat, Kader
  • Mangelinck-Noël, Nathalie
  • Kaldre, Imants
  • Salloum-Abou-Jaoude, Georges
  • Wang, Jiang
  • Reinhart, Guillaume
  • Bojarevics, Andris
  • Buligins, Leonids
  • Thi, Henri Nguyen
  • Ren, Zhong Ming
  • Li, Xi
  • Hachani, Lakhdar
  • Nguyen Thi, Henri
  • Nguyen-Thi, Henri
  • Lafford, Tamzin, A.
  • Combeau, Hervé
  • Duterrail, Yves
  • Kumar, Arvind
  • Bellet, Michel
  • Zaloznik, Miha
  • Gandin, Charles-André
  • Rady, Mohamed
  • Dussoubs, Bernard
  • Gobin, Dominique
  • Mosbah, Salem
  • Goyeau, Benoit
  • Quatravaux, Thibault
  • Arquis, Eric
  • Zimmermann, G.
  • Zaïdat, K.
  • Weiss, A.
  • Noeppel, A.
  • Wang, X. D.
  • Ciobanas, A. I.
  • Kumar, A.
  • Gobin, D.
  • Goyeau, B.
  • Dussoubs, B.
  • Duterrail, Y.
  • Arquis, E.
  • Rady, M.
  • Zazloznik, M.
  • Combeau, H.
OrganizationsLocationPeople

conferencepaper

Three-phase numerical modeling for equiaxed solidification of Sn–10 wt.%Pb alloy under forced convection driven by electromagnetic force

  • Wang, T.
  • Wang, E.
  • Delannoy, Y.
  • Budenkova, Olga
  • Fautrelle, Y.
Abstract

International audience ; A three-phase equiaxed solidification model where macroscale heat transfer and fluid flow are coupled with microscale nucleation and dendrite growth, is applied to the simulation of the macrosegregation in binary alloy solidification subjected to the electromagnetic stirring. The investigated experimental solidification case is conducted in a cavity which has a good control of the thermal boundary conditions. The proposed model uses a double time step scheme to accelerate the solution. Electromagnetic force is introduced as a source term into momentum equation in analytical form. To account for the friction from the side walls, a 2D½ flow model is applied to a three-dimensional experimental configuration. A comparison between the results of simulation and experimental ones is made.

Topics
  • impedance spectroscopy
  • phase
  • simulation
  • solidification