Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Castano, N.

  • Google
  • 2
  • 3
  • 4

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (2/2 displayed)

  • 2018Synthesis and morphological characterization of Li-Ti/PVP fibers as precursors for Li4Ti5O12 towards its future use as anode materials in Li-ion fiber batteries by means of Electrospinning1citations
  • 2018Electrospinning synthesis of Li-Fe-P/PAN based micro-nanofibers as precursors for LiFePO4 cathode material in Li-ion fiber battery applications3citations

Places of action

Chart of shared publication
Martinez-Tejada, Hader Vladimir
2 / 12 shared
Cortes, M. A.
2 / 2 shared
Garcia, E.
2 / 6 shared
Chart of publication period
2018

Co-Authors (by relevance)

  • Martinez-Tejada, Hader Vladimir
  • Cortes, M. A.
  • Garcia, E.
OrganizationsLocationPeople

article

Synthesis and morphological characterization of Li-Ti/PVP fibers as precursors for Li4Ti5O12 towards its future use as anode materials in Li-ion fiber batteries by means of Electrospinning

  • Martinez-Tejada, Hader Vladimir
  • Castano, N.
  • Cortes, M. A.
  • Garcia, E.
Abstract

<p>The ever-increasing evolution and popularity of electronic devices, in hand with globalization, has led to a highly innovative market, always in movement. Novel applications such as smart textiles, where portable electronics are coupled to fabrics, are expected to become a worldwide trend when they overcome some limitations, especially with the energy storage systems used to power them. It is in this context where a flexible battery with the shape of a fiber is of importance. Electrospinning is a versatile synthesis technique where micro and nano fibers can be obtained. When these fibers are conducted onto a substrate it is possible to produce materials with different characteristics and morphologies. In this work, Li4Ti5O12 (LTO) was synthesized as anode material for li-ion batteries and was further characterized. LTO is attractive as it presents characteristics such as high thermal stability, relatively high volumetric capacity and high cyclability. The synthesis of this material was developed in two steps. First, a precursor solution containing a spinnable polymer, and titanium and lithium salts, which were dissolved in a mixture of solvents, was subjected to a process of electrospinning. Then, the obtained fibers were calcined at temperatures between 650 and 850 °C for 7-10 hours in air or argon. Scanning electron microscopy (SEM) coupled to energy dispersive x-ray spectroscopy (EDS) was used to study its morphology and elemental composition. Meanwhile, thermogravimetric analysis (TGA) was performed to study the thermal stability.</p>

Topics
  • impedance spectroscopy
  • morphology
  • polymer
  • scanning electron microscopy
  • thermogravimetry
  • titanium
  • Lithium
  • Energy-dispersive X-ray spectroscopy
  • electrospinning